Reputation: 24565
How can I plot a fanchart as displayed on this Wikipedia page?
I have installed the nlme
package with its MathAchieve
dataset, but I cannot find the commands for plotting this graph.
The nlme
pdf file is here.
I also checked this link but it is non-english.
With the fan.plot
function from the plotrix
package, I could only draw pie charts:
https://sites.google.com/site/distantyetneversoclose/excel-charts/the-pie-doughnut-combination-a-fan-plot
Thanks for your help.
Upvotes: 4
Views: 615
Reputation: 27388
Having thought about this a bit more since my previous answer, I've come up with a simpler way of producing multipanel (if appropriate) fanplots, overlaid on a levelplot
, as shown in the Wikipedia Fan chart page. This approach works with a data.frame
that has two independent variables and zero or more conditioning variables that separate data into panels.
First we define a new panel function, panel.fanplot
.
panel.fanplot <- function(x, y, z, zmin, zmax, subscripts, groups,
nmax=max(tapply(z, list(x, y, groups),
function(x) sum(!is.na(x))), na.rm=T),
...) {
if(missing(zmin)) zmin <- min(z, na.rm=TRUE)
if(missing(zmin)) zmax <- max(z, na.rm=TRUE)
get.coords <- function(a, d, x0, y0) {
a <- ifelse(a <= 90, 90 - a, 450 - a)
data.frame(x = x0 + d * cos(a / 180 * pi),
y = y0 + d * sin(a / 180 * pi))
}
z.scld <- (z - zmin)/(zmax - zmin) * 360
fan <- aggregate(list(z=z.scld[subscripts]),
list(x=x[subscripts], y=y[subscripts]),
function(x)
c(n=sum(!is.na(x)),
quantile(x, c(0.25, 0.5, 0.75), na.rm=TRUE) - 90))
panel.levelplot(fan$x, fan$y,
(fan$z[, '50%'] + 90) / 360 * (zmax - zmin) + zmin,
subscripts=seq_along(fan$x), ...)
lapply(which(!is.na(fan$z[, '50%'])), function(i) {
with(fan[i, ], {
poly <- rbind(c(x, y),
get.coords(seq(z[, '25%'], z[, '75%'], length.out=200),
0.3, x, y))
lpolygon(poly$x, poly$y, col='gray10', border='gray10', lwd=3)
llines(get.coords(c(z[, '50%'], 180 + z[, '50%']), 0.3, x, y),
col='black', lwd=3, lend=1)
llines(get.coords(z[, '50%'], c(0.3, (1 - z[, 'n']/nmax) * 0.3), x, y),
col='white', lwd=3)
})
})
}
Now we create some dummy data and call levelplot
:
d <- data.frame(z=runif(1000),
x=sample(5, 1000, replace=TRUE),
y=sample(5, 1000, replace=TRUE),
grp=sample(4, 1000, replace=TRUE))
colramp <- colorRampPalette(c('#fff495', '#bbffaa', '#70ffeb', '#72aaff',
'#bf80ff'))
levelplot(z ~ x*y|as.factor(grp), d, groups=grp, asp=1, col.regions=colramp,
panel=panel.fanplot, zmin=min(d$z, na.rm=TRUE),
zmax=max(d$z, na.rm=TRUE), at=seq(0, 1, 0.2))
It's important to pass the conditioning variable (that separates plots into panels) to levelplot
via the argument group
, as shown above with the variable grp
, in order for sample sizes to be calculated (shown by white line length).
And here's how we would mimic the Wikipedia plot:
library(nlme)
data(MathAchieve)
MathAchieve$SESfac <- as.numeric(cut(MathAchieve$SES, seq(-2.5, 2, 0.5)))
MathAchieve$MEANSESfac <-
as.numeric(cut(MathAchieve$MEANSES, seq(-1.25, 1, 0.25)))
levels(MathAchieve$Minority) <- c('Non-minority', 'Minority')
MathAchieve$group <-
as.factor(paste0(MathAchieve$Sex, ', ', MathAchieve$Minority))
colramp <- colorRampPalette(c('#fff495', '#bbffaa', '#70ffeb', '#72aaff',
'#bf80ff'))
levelplot(MathAch ~ SESfac*MEANSESfac|group, MathAchieve,
groups=group, asp=1, col.regions=colramp,
panel=panel.fanplot, zmin=0, zmax=28, at=seq(0, 25, 5),
scales=list(alternating=1,
tck=c(1, 0),
x=list(at=seq(1, 11) - 0.5,
labels=seq(-2.5, 2, 0.5)),
y=list(at=seq(1, 11) - 0.5,
labels=seq(-1.25, 1, 0.25))),
between=list(x=1, y=1), strip=strip.custom(bg='gray'),
xlab='Socio-economic status of students',
ylab='Mean socio-economic status for school')
Upvotes: 5
Reputation: 27388
I can think of a couple of ways of going about this with lattice
. You could either use xyplot
and fill panels with panel.fill
, or you can use levelplot
. The polygons themselves have to be added with a custom panel and lpolygon
. Here's how I've done it with levelplot
. I'm really a lattice
novice, though, and there may very well be some shortcuts that I don't know about.
Because I'm using levelplot
, we first create a matrix containing median MathAch
scores for each combination of MEANSES
and SES
. These will be used to plot the cell colours.
library(lattice)
library(nlme)
data(MathAchieve)
Below, I convert SES
and MEANSES
into factors using cut
, with breakpoints as in the Wikipedia example.
MathAchieve$SESfac <- as.numeric(cut(MathAchieve$SES, seq(-2.5, 2, 0.5)))
MathAchieve$MEANSESfac <- as.numeric(cut(MathAchieve$MEANSES,
seq(-1.25, 1, 0.25)))
I'm not sure how to plot the four panels as on the Wikipedia page, so I'll just subset to non-minority females:
d <- subset(MathAchieve, Sex=='Female' & Minority=='No')
To convert this dataframe to a matrix, I split
it to a list and then coerce back to a matrix with the appropriate dimensions. Each cell of the matrix contains the median MathAch
for a particular combination of SESfac
and MEANSESfac
.
l <- split(d$MathAch, list(d$SESfac, d$MEANSESfac))
m.median <- matrix(sapply(l, median), ncol=9)
When we use levelplot
we will have access to x
and y
, being the coordinates of the "current" cell. In order to pass the vector of MathAch
to levelplot
, so that a polygon can be plotted for each cell, I create a matrix (same dimensions as m.median
) of lists, where each cell is a list containing a MathAch
vector.
m <- matrix(l, ncol=9)
Below we create a color ramp as used by Wolfram Fischer in the example on Wikipedia.
colramp <- colorRampPalette(c('#fff495', '#bbffaa', '#70ffeb', '#72aaff',
'#bf80ff'))
Now we define the custom panel function. I've commented throughout to explain:
fanplot <- function(x, y, z, subscripts, fans, ymin, ymax,
nmax=max(sapply(fans, length)), ...) {
# nmax is the maximum sample size across all combinations of conditioning
# variables. For generality, ymin and ymax are limits of the circle around
# around which fancharts are plotted.
# fans is our matrix of lists, which are used to plot polygons.
get.coords <- function(a, d, x0, y0) {
a <- ifelse(a <= 90, 90 - a, 450 - a)
data.frame(x = x0 + d * cos(a / 180 * pi),
y = y0 + d * sin(a / 180 * pi))
}
# getcoords returns coordinates of one or more points, given angle(s),
# (i.e., a), distances (i.e., d), and an origin (x0 and y0).
panel.levelplot(x, y, z, subscripts, ...)
# Below, we scale the raw vectors of data such that ymin thru ymax map to
# 0 thru 360. We then calculate the relevant quantiles (i.e. 25%, 50% and 75%).
smry <- lapply(fans, function(y) {
y.scld <- (y - ymin)/(ymax - ymin) * 360
quantile(y.scld, c(0.25, 0.5, 0.75)) - 90
})
# Now we use get.coords to determine relevant coordinates for plotting
# polygons and lines. We plot a white line inwards from the circle's edge,
# with length according to the ratio of the sample size to nmax.
mapply(function(x, y, smry, n) {
if(!any(is.na(smry))) {
lpolygon(rbind(c(x, y),
get.coords(seq(smry['25%'], smry['75%'], length.out=200),
0.3, x, y)), col='gray10', lwd=2)
llines(get.coords(c(smry['50%'], 180 + smry['50%']), 0.3,
x, y), col=1, lwd=3)
llines(get.coords(smry['50%'], c(0.3, (1 - n/nmax) * 0.3),
x, y), col='white', lwd=3)
}
}, x=x, y=y, smry=smry, n=sapply(fans, length))
}
And finally use this custom panel function within levelplot
:
levelplot(m.median, fans=m, ymin=0, ymax=28,
col.regions=colramp, at=seq(0, 25, 5), panel=fanplot,
scales=list(tck=c(1, 0),
x=list(at=seq_len(ncol(m.median) + 1) - 0.5,
labels=seq(-2.5, 2, 0.5)),
y=list(at=seq_len(nrow(m.median) + 1) - 0.5,
labels=seq(-1.25, 1, 0.25))),
xlab='Socio-economic status of students',
ylab='Mean socio-economic status for the school')
I haven't coloured cells grey if they have sample size < 7, as was done for the equivalent plot on the Wikipedia page, but this could be done with lrect
if needed.
Upvotes: 5