Reputation: 1006
Suppose I have the following function, that takes a function as a parameter.
template <typename F>
void test_func(F f)
{
// typedef typename function_traits<F>::return_type T;
typedef int T;
std::mt19937 rng(std::time(0));
std::uniform_int_distribution<T> uint_dist10(0, std::numeric_limits<T>::max());
f(uint_dist10(rng), uint_dist10(rng)); // Problem!
}
Usage would be:
int foo(int, int) { return 0; }
int bar(int, int, int, int) { return 0; }
int main()
{
test_func(foo);
// test_func(bar);
}
Just like foo
and bar
, I have several functions that return T
, and take some amount of parameters of type T
. I would like test_func
to generate as many calls to my RNG as the function f takes parameters. In other words, we can assume T
is always an integer type, and that each parameter will be the same, i.e. a function call to an RNG.
Using function_traits (such as the ones in Boost), I can fetch the return type of F
, and that helps a little. Roughly, my question is
How can I generate a needed amount of function calls so that it matches the arity of the function F?
Before C++11, I would have looked at Boost.Preprocessor, or maybe relied on template specialization. Is there a nicer way of doing it now?
Upvotes: 22
Views: 1235
Reputation: 361254
First define a meta function called arity
to compute arity of the function (it is just a simple implementation; can be improved to compute arity of functors also. See my answer here.):
template<typename F>
struct arity;
template<typename R, typename ...Args>
struct arity<R (*)(Args...)>
{
static const std::size_t value = sizeof ... (Args);
};
then define another meta function called genseq
to generate a compile time sequence of integral values:
template<int ... N>
struct seq
{
using type = seq<N...>;
template<int I>
struct push_back : seq<N..., I> {};
};
template<int N>
struct genseq : genseq<N-1>::type::template push_back<N-1> {};
template<>
struct genseq<0> : seq<> {};
template<int N>
using genseq_t = typename genseq<N>::type; //Just a friendly alias!
then a function invoker as:
template<typename F, typename ArgEvaluator, int ...N>
void invoke(seq<N...>, F f, ArgEvaluator arg_evaluator)
{
using arg_type = decltype(arg_evaluator());
constexpr std::size_t arity = sizeof ... (N);
arg_type args[] { (N, arg_evaluator()) ... }; //enforce order of evaluation
f( args[N] ... );
}
And then your code would become this:
template <typename F>
void test_func(F f)
{
// typedef typename function_traits<F>::return_type T;
typedef int T;
std::mt19937 rng(std::time(0));
std::uniform_int_distribution<T> uint_dist10(0, std::numeric_limits<T>::max());
//f(uint_dist10(rng), uint_dist10(rng)); // Problem!
auto arg_evaluator = [&]() mutable { return uint_dist10(rng); };
invoke(genseq_t<arity<F>::value>(), f, arg_evaluator);
}
Hope that helps.
Upvotes: 22
Reputation: 119847
No need for complicated meta calculations.
template <typename Ret, typename ... T>
void test_func (Ret f (T...))
{
std::mt19937 rng(std::time(0));
f((std::uniform_int_distribution<T>(0, std::numeric_limits<T>::max())(rng))...);
}
int moo(int, int, int){ return 0; }
int main ()
{
test_func(moo);
}
To support functors one needs a bit longer implementation, still not too complicated:
// separate arguments type from function/functor type
template <typename F, typename ... T>
void test_func_impl (F f)
{
std::mt19937 rng(std::time(0));
f((std::uniform_int_distribution<T>(0, std::numeric_limits<T>::max())(rng))...);
}
// overload for a straight function
template <typename Ret, typename ... T>
void test_func (Ret f (T...))
{
test_func_impl<decltype(f), T...>(f);
}
// forwarder for a functor with a normal operator()
template <typename F, typename Ret, typename... T>
void test_func_for_functor (F f, Ret (F::*)(T...))
{
test_func_impl<F, T...>(f);
}
// forwarder for a functor with a const operator()
template <typename F, typename Ret, typename... T>
void test_func_for_functor (F f, Ret (F::*)(T...)const)
{
test_func_impl<F, T...>(f);
}
// overload for anything that has operator()
template <typename F>
void test_func (F f)
{
test_func_for_functor(f, &F::operator());
}
Upvotes: 10