Reputation: 20415
I have table x
:
website
0 http://www.google.com/
1 http://www.yahoo.com
2 None
I want to replace python None with pandas NaN. I tried:
x.replace(to_replace=None, value=np.nan)
But I got:
TypeError: 'regex' must be a string or a compiled regular expression or a list or dict of strings or regular expressions, you passed a 'bool'
How should I go about it?
Upvotes: 194
Views: 344150
Reputation: 3565
This solution is straightforward because can replace the value in all the columns easily.
You can use a dict
:
import pandas as pd
import numpy as np
df = pd.DataFrame([[None, None], [None, None]])
print(df)
0 1
0 None None
1 None None
# replacing
df = df.replace({None: np.nan})
print(df)
0 1
0 NaN NaN
1 NaN NaN
Upvotes: 8
Reputation: 2811
Its an old question but here is a solution for multiple columns:
values = {'col_A': 0, 'col_B': 0, 'col_C': 0, 'col_D': 0}
df.fillna(value=values, inplace=True)
For more options, check the docs:
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.fillna.html
Upvotes: 1
Reputation: 11707
You can use DataFrame.fillna
or Series.fillna
which will replace the Python object None
, not the string 'None'
.
import pandas as pd
import numpy as np
For dataframe:
df = df.fillna(value=np.nan)
For column or series:
df.mycol.fillna(value=np.nan, inplace=True)
Upvotes: 276
Reputation: 468
If you use df.replace([None], np.nan, inplace=True), this changed all datetime objects with missing data to object dtypes. So now you may have broken queries unless you change them back to datetime which can be taxing depending on the size of your data.
If you want to use this method, you can first identify the object dtype fields in your df and then replace the None:
obj_columns = list(df.select_dtypes(include=['object']).columns.values)
df[obj_columns] = df[obj_columns].replace([None], np.nan)
Upvotes: 8
Reputation: 1758
Here's another option:
df.replace(to_replace=[None], value=np.nan, inplace=True)
Upvotes: 36
Reputation: 337
The following line replaces None
with NaN
:
df['column'].replace('None', np.nan, inplace=True)
Upvotes: 28