Stefan
Stefan

Reputation: 4530

Iterate over all but d-th dimension of any boost::multi_array

Quite often one wants to apply operation f() along dimension d of an N-dimensional array A. This implies looping over all remaining dimensions of A. I tried to figure out if boost::multi_array was capable of this. Function f(A) should work on all varieties of boost::multi_array, including boost:multi_array_ref, boost::detail::multi_array::sub_array, and boost::detail::multi_array::array_view, ideally also for the rvalue types such as boost::multi_array_ref<T, NDims>::reference.

The best I could come up with is an implementation of a reshape() function that can be used to reshape the ND array into a 3D array, such that the working dimension is always the middle one. Here is f.hpp:

#include "boost/multi_array.hpp"
#include <ostream>

using namespace boost;

typedef multi_array_types::index index_t;
typedef multi_array_types::index_range range;

template <template <typename, std::size_t, typename...> class Array,
          typename T, std::size_t NDims, typename index_t, std::size_t NDimsNew>
multi_array_ref<T, NDimsNew>
reshape(Array<T, NDims>& A, const array<index_t, NDimsNew>& dims) {
    multi_array_ref<T, NDimsNew> a(A.origin(), dims);
    return a;
}

template <template <typename, std::size_t, typename...> class Array, typename T>
void f(Array<T, 1>& A) {
    for (auto it : A) {
        // do something with it
        std::cout << it << " ";
    }
    std::cout << std::endl;
}

template <template <typename, std::size_t, typename...> class Array, 
          typename T, std::size_t NDims>
void f(Array<T, NDims>& A, long d) {
    auto dims = A.shape();
    typedef typename std::decay<decltype(*dims)>::type type;

    // collapse dimensions [0,d) and (d,Ndims)
    array<type, 3> dims3 = {
        std::accumulate(dims, dims + d, type(1), std::multiplies<type>()),
        dims[d],
        std::accumulate(dims + d + 1, dims + NDims, type(1), std::multiplies<type>())
    };

    // reshape to collapsed dimensions
    auto A3 = reshape(A, dims3);

    // call f for each slice [i,:,k]
    for (auto Ai : A3) {
        for (index_t k = 0; k < dims3[2]; ++k) {
            auto S = Ai[indices[range()][k]];
            f(S);
        }
    }
}

template <template <typename, std::size_t, typename...> class Array, 
          typename T, std::size_t NDims>
void f(Array<T, NDims>& A) {
    for (long d = NDims; d--; ) {
        f(A, d);
    }
}

This is the test program test.cpp:

#include "f.hpp"

int main() {
    boost::multi_array<double, 3> A(boost::extents[2][2][3]);
    boost::multi_array_ref<double, 1> a(A.data(), boost::extents[A.num_elements()]);
    auto Ajk = A[1];
    auto Aik = A[boost::indices[range()][1][range()]];

    int i = 0;
    for (auto& ai : a) ai = i++;

    std::cout << "work on boost::multi_array_ref" << std::endl;
    f(a);

    std::cout << "work on boost::multi_array" << std::endl;
    f(A);

    std::cout << "work on boost::detail::multi_array:sub_array" << std::endl;
    f(Ajk);

    std::cout << "work on boost::detail::multi_array:sub_array" << std::endl;
    f(Aik);   // wrong result, since reshape() ignores strides!

    //f(A[1]);   // fails: rvalue A[1] is boost::multi_array_ref<double, 3ul>::reference
}

Clearly, there are problems with this approach, namely when a slice is passed to f(), such that the memory is no longer contiguous, which defeats the implementation of reshape().

It appears a better (more C++-like) way would be to construct an aggregate iterator out of the iterators that the boost types provide, since this would automatically take care of non-unity strides along a given dimension. boost::detail::multi_array::index_gen looks relevant, but it is not quite clear to me how this can be used to make an iterator over all slices in dimension d. Any ideas?

Note:

There are similar questions already on SO, but none was quite satisfactory to me. I am not interested in specialized solutions for N = 3 or N = 2. It's got to work for any N.

Update:

Here is the equivalent of what I want in Python:

def idx_iterator(s, d, idx):
    if len(s) == 0:
        yield idx
    else: 
        ii = (slice(None),) if d == 0 else xrange(s[0])
        for i in ii:
            for new_idx in idx_iterator(s[1:], d - 1, idx + [i]):
                yield new_idx

def iterator(A, d=0):
    for idx in idx_iterator(A.shape, d, []):
        yield A[idx]

def f(A):
    for d in reversed(xrange(A.ndim)):
        for it in iterator(A, d):
            print it
        print

import numpy as np
A = np.arange(12).reshape((2, 2, 3))

print "Work on flattened array"
f(A.ravel())

print "Work on array"
f(A)

print "Work on contiguous slice"
f(A[1])

print "Work on discontiguous slice"
f(A[:,1,:])

The same should somehow be possible using the functionality in index_gen.hpp, but I have still not been able to figure out how.

Upvotes: 1

Views: 509

Answers (1)

Stefan
Stefan

Reputation: 4530

Ok, after spending a significant amount of time studying the implementation of boost::multi_array, I am now ready to answer my own question: No, there are no provisions anywhere in boost::multi_array that would allow one to iterate along any but the first dimension. The best I could come up with is to construct an iterator that manually manages the N-1 indices that are being iterated over. Here is slice_iterator.hpp:

#include "boost/multi_array.hpp"

template <template <typename, std::size_t, typename...> class Array,
          typename T, std::size_t NDims>
struct SliceIterator {
    typedef Array<T, NDims> array_type;
    typedef typename array_type::size_type size_type;
    typedef boost::multi_array_types::index_range range;
    typedef boost::detail::multi_array::multi_array_view<T, 1> slice_type;
    typedef boost::detail::multi_array::index_gen<NDims, 1> index_gen;

    array_type& A;
    const size_type* shape;
    const long d;
    index_gen indices;
    bool is_end = false;

    SliceIterator(array_type& A, long d) : A(A), shape(A.shape()), d(d) {
        int i = 0;
        for (; i != d; ++i) indices.ranges_[i] = range(0);
        indices.ranges_[i++] = range();
        for (; i != NDims; ++i) indices.ranges_[i] = range(0);
    }

    SliceIterator& operator++() {
        // addition with carry, excluding dimension d
        int i = NDims - 1;
        while (1) {
            if (i == d) --i;
            if (i < 0) {
                is_end = true;
                return *this;
            }
            ++indices.ranges_[i].start_;
            ++indices.ranges_[i].finish_;
            if (indices.ranges_[i].start_ < shape[i]) {
                break;
            } else {
                indices.ranges_[i].start_ = 0;
                indices.ranges_[i].finish_ = 1;
                --i;
            }
        }
        return *this; 
    }

    slice_type operator*() { 
        return A[indices];
    }

    // fakes for iterator protocol (actual implementations would be expensive)
    bool operator!=(const SliceIterator& r) {
        return !is_end;
    }

    SliceIterator begin() {return *this;}
    SliceIterator end()   {return *this;}
};

template <template <typename, std::size_t, typename...> class Array,
          typename T, std::size_t NDims>
SliceIterator<Array, T, NDims> make_slice_iterator(Array<T, NDims>& A, long d) {
    return SliceIterator<Array, T, NDims>(A, d);
}

// overload for rvalue references
template <template <typename, std::size_t, typename...> class Array,
          typename T, std::size_t NDims>
SliceIterator<Array, T, NDims> make_slice_iterator(Array<T, NDims>&& A, long d) {
    return SliceIterator<Array, T, NDims>(A, d);
}

It can be used as

for (auto S : make_slice_iterator(A, d)) {
    f(S);
}

and works for all examples in my question.

I must say that boost::multi_array's implementation was quite disappointing to me: Over 3700 lines of code for what should be little more than a bit of index housekeeping. In particular the iterators, which are only provided for the first dimension, aren't anywhere near a performance implementation: There are actually up to 3*N + 5 comparisons carried out at each step to decide whether the iterator has arrived at the end yet (note that my implementation above avoids this problem by faking operator!=()), which makes this implementation unsuitable for anything but arrays with a dominant last dimension, which is handled more efficiently. Moreover, the implementation doesn't take advantage of dimensions that are contiguous in memory. Instead, it always proceeds dimension-by-dimension for operations such as array assignment, wasting significant optimization opportunities.

In summary, I find numpy's implementation of an N-dimensional array much more compelling than this one. There are 3 more observations that tell me "Hands Off" of boost::multi_array:

  • I couldn't find any serious use cases for boost::multi_array anywhere on the web
  • Development appears to have essentially stopped in 2002
  • This (and similar) questions on StackOverflow have hardly generated any interest ;-)

Upvotes: 4

Related Questions