Reputation: 8630
I have two numpy arrays
X.shape = (100, 10)
Y.shape = (100, 10)
I want to find the pearson correlations between columns of X and Y
i.e.
from scipy.stats.stats import pearsonr
def corr( X, Y ):
return np.array([ pearsonr( x, y )[0] for x,y in zip( X.T, Y.T ) ] )
corr( X, Y ).shape = (10, )
Is there a function for this? So far, all the functions I can find calculate correlation matrices. There is a pairwise correlation function in Matlab, so I'm pretty sure someone must have written one for Python.
The reason why I don't like the example function above is because it seems slow.
Upvotes: 1
Views: 4088
Reputation: 61
If columns are variables and rows are observations in X, Y (and you would like to find column-wise correlations between X and Y):
X = (X - X.mean(axis=0)) / X.std(axis=0)
Y = (Y - Y.mean(axis=0)) / Y.std(axis=0)
pearson_r = np.dot(X.T, Y) / X.shape[0]
To find the p-value, convert the pearson_r
to t statistics:
t = pearson_r * np.sqrt(X.shape[0] - 2) / np.sqrt(1 - pearson_r ** 2)
and the p-values is 2 × P(T > t).
Upvotes: 5
Reputation: 97261
I modified from scipy.stats.pearsonr
:
from scipy.stats import pearsonr
x = np.random.rand(100, 10)
y = np.random.rand(100, 10)
def corr( X, Y ):
return np.array([ pearsonr( x, y )[0] for x,y in zip( X.T, Y.T) ] )
def pair_pearsonr(x, y, axis=0):
mx = np.mean(x, axis=axis, keepdims=True)
my = np.mean(y, axis=axis, keepdims=True)
xm, ym = x-mx, y-my
r_num = np.add.reduce(xm * ym, axis=axis)
r_den = np.sqrt((xm*xm).sum(axis=axis) * (ym*ym).sum(axis=axis))
r = r_num / r_den
return r
np.allclose(pair_pearsonr(x, y, axis=0), corr(x, y))
Upvotes: 2