Reputation: 777
This must be really simple math but I don't know how to solve it.
I need to write a function that returns a number on a scale from 1 to 3 like this:
input: -5 output: 1
input: -4 output: 2
input: -3 output: 3
input: -2 output: 1
input: -1 output: 2
input: 0 output: 3
input: 1 output: 1
input: 2 output: 2
input: 3 output: 3
input: 4 output: 1
input: 5 output: 2
input: 6 output: 3
input: 7 output: 1
The following function works great with positive numbers
static const int getOnScaleOneToThree(int input)
{
int x = ceil(input / 3);
return abs((input - (x * 3)));
}
But it inverts (of course) with negative input like this:
input: -6 output: 3
input: -5 output: 2
input: -4 output: 1
input: -3 output: 3
input: -2 output: 2
input: -1 output: 1
input: 0 output: 3
input: 1 output: 1
input: 2 output: 2
input: 3 output: 3
Any ideas? Thanks!
Upvotes: 1
Views: 179
Reputation: 3431
Alright I've been contemplating this for a bit, but based on this:
https://meta.stackexchange.com/q/213976/171816
I'm just going to post this as an extra answer, referencing the answer on that other question.
The other answer has a solution more elegant than my first answer: https://stackoverflow.com/a/1082938/982107
by writing the modulo function as
static int mod(int x, int m)
{
int r = x%m;
return r<0 ? r+m : r;
}
you will get the right answers for this problem even when x is negative.
This will allow you to write the function like so:
static int getOnScaleOneToThree(int input)
{
return (mod((input + 2), 3) + 1);
}
Here's a general solution again, this time keeping the amount of code to a minimum:
static int getOnScale(int input, int minVal, int maxVal, int zeroVal)
{
int dividend = input;
if(minVal > maxVal)
{
//Alter values for reverse scale
std::swap(minVal, maxVal);
dividend *= -1;
}
dividend += (zeroVal - minVal);
int divisor = maxVal - minVal + 1;
return (mod(dividend , divisor) + minVal);
}
Upvotes: 1
Reputation: 3431
This should work, and avoids the implementation-dependent outcome of a modulo operation with a negative number.
if(input >= 0)
{
return (1 + ((input + 2) % 3));
}
else
{
return (3 - ((-input) % 3));
}
Additionally, here's a more general (and verbose) solution:
static const int getOnScale(int input, int minVal, int maxVal, int zeroVal)
{
if(input == 0)
{
//Might as well return this right away.
return zeroVal;
}
else
{
if(maxVal >= minVal)
{
int divisor = maxVal - minVal + 1;
if(input > 0)
{
int dividend = input + zeroVal - minVal;
return (minVal + (dividend % divisor));
}
else
{
int dividend = maxVal - zeroVal - input;
return (maxVal - (dividend % divisor));
}
}
else
{
//Reverse scale
int divisor = minVal - zeroVal + 1;
if(input > 0)
{
int dividend = minVal - zeroVal + input;
return (minVal - (dividend % divisor));
}
else
{
int dividend = -input + zeroVal - maxVal;
return (maxVal + (dividend % divisor));
}
}
}
}
In this question's case, this function would be called as:
getOnScale(input, 1, 3, 3);
Upvotes: 2
Reputation: 10497
Try:
int out( int in )
{
return ( in >= 0 ) ? ( ( in + 2 ) % 3 ) + 1 : 3 - ( -1 * in % 3 ); }
}
Good point about the implementation-defined behaviour when the dividend goes below zero and the divisor is positive.
Upvotes: 1
Reputation: 37059
It's important not to get tangled up in premature optimization, so the following is probably sufficient.
long get_remainder(long n) {
long * remainders = new[(unsigned int)0xffffffff];
long remainder = 1;
for ( long i = LONG_MIN; i < LONG_MAX; ++i ) {
remainders[i + -LONG_MIN] = remainder++;
if ( remainder > 3 )
remainder = 1;
}
int rtn = remainders[n + -LONG_MIN];
delete[] remainders;
return rtn;
}
Use like so:
for ( int i = -10; i < 10; ++i )
{
int remainder = get_remainder(i);
}
Upvotes: 0
Reputation: 12047
static const int getOnScaleOneToThree(int input)
{
return (int)((unsigned int)(input + 0x80000000)%3 + 1);
}
This works if int
is 32 bits.
Upvotes: 1
Reputation: 1916
You can use LUT (look-up table). Here is some pseudocode:
int output[] = { 3, 2, 1, 3, 2, 1, 3, 1, 2, 3 };
assert(input >= -6 && input <= 3);
int index = input+6;
int value = output[index];
LUTs are super-fast, easy to maintain and perfect for strange mappings that are difficult to calculate at runtime.
They pose a challange when the input range is large - memory requirements can obviously reach the stratosphere. There are solutions for that, such as:
Upvotes: 1