Reputation: 583
I have the following data frame:
df = data.frame(ID=c(1,2,3), A=c(0,1,1), B=c(0,2,1), C=c(0,2,2))
df[df=="0"]<-NA;
df[df=="1"]<-"Less";
df[df=="2"]<-"Average";
df[df=="3"]<-"More";
# reset the id row again --- i know its lame, is there a better way?
df$ID = c(1:3);
# turn to factors
df$A = factor(df$A, levels = c("NA", "Less", "Average", "More"));
df$B = factor(df$B, levels = c("NA", "Less", "Average", "More"));
df$C = factor(df$C, levels = c("NA", "Less", "Average", "More"));
I am sure this is not a perfect implementation, I am open for suggestions how this can be done better :)
How can I create a faceted bar diagram for A,B, and C using ggplot? This barplot would then show 3 barplots (one for each column of the dataframe) and each have 4 bars inside, for NA, Less, Average, and More. I am unsure about the parts with the ??? but hope that the code piece below helps...
ggplot(df$???, aes(value, fill=???)) +
geom_bar(aes(y = (..count..)/totalNumber)) + facet_wrap(~???) +
theme(
axis.text.x = element_text(angle = 45, hjust = 1, face=2),
axis.text=element_text(size=12), axis.title=element_text(size=14,face="bold"),
panel.background = element_rect(fill = "white")
) +
scale_fill_manual(values=c("blue4","steelblue2", "blue4","steelblue2",
"blue4","steelblue2")) + opts(legend.position = "none") +
scale_y_continuous(breaks=seq(0, 1, 0.1), labels = percent_format()) +
xlab("") + ylab("") +
coord_flip();
Thanks in Advance!
Best, Ralf
Upvotes: 1
Views: 894
Reputation: 7113
You need to melt
your data, i.e. bring it into long format:
library("reshape2")
df.molten <- melt(df, id.vars="ID")
head(df.molten)
ID variable value
1 1 A <NA>
2 2 A Less
3 3 A Less
4 1 B <NA>
5 2 B Average
6 3 B Less
ggplot( df.molten , aes( x = value ) )+
geom_bar() +
facet_wrap( "variable" )
Concerning the unused factor level More
you have to assign the levels after melting again:
df.molten$value <- factor( df.molten$value, levels = c("NA", "Less", "Average", "More") )
Even if you use melt
's parameter value.factor = TRUE
unused factor levels are dropped while melting. Additionally, you have to add
+ scale_x_discrete( drop = FALSE )
to your plot, as explained in ggplot2 keep unused levels barplot:
Upvotes: 2