Reputation: 1688
I have tried to apply a function to a pandas dataframe like this
fogo = intervalo.resample('D', how = ['max']).TMP
fogo['Tmin'] = intervalo.resample('D', how = ['min']).TMP
fogo['Rain'] = intervalo.resample('D', how = ['sum']).RNF
fogo.columns = ['TMax','TMin','Rain']
fogo['Fogo'] = (fogo['TMax']>24) \
| ((fogo['TMax']>21) & (fogo['TMin']>12)) \
| ((fogo['TMax']>18) & (fogo['TMin']>10) & (fogo['Rain']>2))
def f(x):
if (fogo['TMax']>24):
return 'a'
elif ((fogo['TMax']>21) & (fogo['TMin']>12)):
return 'b'
elif ((fogo['TMax']>18) & (fogo['TMin']>10) & (fogo['Rain']>2)):
return 'c'
fogo['Causa'] = fogo.apply(f, axis=1)
TMax TMin Rain Fogo Causa
2012-04-01 21.6 10.3 0.8 False empty
2012-04-02 19.3 9.5 0.0 False empty
2012-04-03 16.2 10.1 0.2 False empty
2012-04-04 16.7 11.4 0.2 False empty
2012-04-05 14.0 5.9 2.9 False empty
but it returns the following error
'The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
Could you help me?
Thank you
Hugo
Upvotes: 1
Views: 172
Reputation: 393863
So the first problem in your code is that you are calling apply and setting param axis=1
this applies your function row-wise which is fine.
However, in your function you are referencing the whole dataframe when you call fogo['TMax'] > 24, this is why you get the error as you are applying your function row-wise but then trying to reference the entire dataframe so it confused.
So you could change your function to this:
def f(x):
if (x['TMax']>24):
return 'a'
elif ((x['TMax']>21) & (x['TMin']>12)):
return 'b'
elif ((x['TMax']>18) & (x['TMin']>10) & (x['Rain']>2)):
return 'c'
However, seeing as you are just setting three values for 3 different conditions then you could just use boolean indexing to create a mask and just set all rows that meet your conditions.
so:
fogo.loc[fogo['TMax']> 24,'Causa'] = 'a'
fogo.loc[(fogo['TMax']> 21) & (fogo['TMin'] > 12),'Causa'] = 'b'
fogo.loc[(fogo['TMax']> 18) & (fogo['TMin'] > 10) & (fogo['Rain'] > 2),'Causa'] = 'c'
This will be much faster then iterating row-wise especially for large dataframes.
So on your example data I can do this:
In [10]:
fogo.loc[fogo['TMax']> 21,'Causa'] = 'a'
fogo.loc[(fogo['TMax']> 21) & (fogo['TMin'] > 11),'Causa'] = 'b'
fogo.loc[(fogo['TMax']> 11) & (fogo['TMin'] > 5) & (fogo['Rain'] > 2),'Causa'] = 'c'
fogo
Out[10]:
TMax TMin Rain Fogo Causa
2012-04-01 21.6 10.3 0.8 False a
2012-04-02 19.3 9.5 0.0 False empty
2012-04-03 16.2 10.1 0.2 False b
2012-04-04 16.7 11.4 0.2 False b
2012-04-05 14.0 5.9 2.9 False c
[5 rows x 5 columns]
Upvotes: 1