Reputation: 2070
I have a list of lists like:
> head(mylist)
[[1]]
[1] 0.000 0.067 0.400 0.733 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
[[2]]
[1] 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.400 0.867 1.000
[[3]]
[1] 0.000 0.000 0.000 0.000 0.000 0.000 0.133 0.467 0.933 1.000 1.000 1.000 1.000
[[4]]
[1] 0.267 0.600 0.933 0.933 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
and I would like to build a new vector that contains the element wise mean of each sublists element, like at the first place there should be the result of
mean(c(mylist[[1]][1], mylist[[2]][1], mylist[[3]][1], mylist[[4]][1])).
I think it should be something along the line:
lapply(mylist, mean)
but in this case I just have the mean of each sublist.
Upvotes: 0
Views: 2687
Reputation: 2618
This should also work fine for you:
apply(X=as.data.frame(mylist),MARGIN=1,FUN=mean)
Basically you transform your list in a data frame and you call the function apply with the desired margin (1 for rows, as in this case, or 2 for columns) and specifying the mean function.
Upvotes: 0
Reputation: 81693
You can combine the elements to a matrix and use colMeans
:
mylist <- list(1:5, 1:5, 1:5)
colMeans(do.call(rbind, mylist))
# [1] 1 2 3 4 5
Upvotes: 3