Reputation: 993
I'm working with a pandas data frame where the 'date_time' column has values that look like datetime stamps: 2014-02-21 17:16:42
I can call that column using df['date_time'], and I want to search for rows with a particular date. I've been trying something along the lines of
df[(df['date_time']=='2014-02-21')]
but I don't know how to just search for date from the datetime value. Also, I'm not sure if it's relevant, but when I check type(df.date_time[0]) it returns string, instead of some datetime type object.
Thanks a lot.
Upvotes: 3
Views: 2859
Reputation: 375485
It is much more efficient not to use the strings here (assuming these are already datetime64 - which you should be!), as these have to be calculated before comparing... and string stuff is slow.
In [11]: s = pd.Series(pd.to_datetime(['2014-02-21 17:16:42', '2014-02-22 17:16:42']))
In [12]: s
Out[12]:
0 2014-02-21 17:16:42
1 2014-02-22 17:16:42
dtype: datetime64[ns]
You can either just do a simple ordering check:
In [13]: (pd.Timestamp('2014-02-21') < s) & (s < pd.Timestamp('2014-02-22'))
Out[13]:
0 True
1 False
dtype: bool
In [14]: s.loc[(pd.Timestamp('2014-02-21') < s) & (s < pd.Timestamp('2014-02-22'))]
Out[14]:
0 2014-02-21 17:16:42
dtype: datetime64[ns]
However, it's faster to use DatetimeIndex.normalize
(which gets the Timestamp at midnight of each Timestamp):
In [15]: pd.DatetimeIndex(s).normalize()
Out[15]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2014-02-21, 2014-02-22]
Length: 2, Freq: None, Timezone: None
In [16]: pd.DatetimeIndex(s).normalize() == pd.Timestamp('2014-02-21')
Out[16]: array([ True, False], dtype=bool)
In [17]: s.loc[pd.DatetimeIndex(s).normalize() == pd.Timestamp('2014-02-21')]
Out[17]:
0 2014-02-21 17:16:42
dtype: datetime64[ns]
Here's some timing (s as above):
In [21]: %timeit s.loc[s.str.startswith('2014-02-21')]
1000 loops, best of 3: 1.16 ms per loop
In [22]: %timeit s.loc[(pd.Timestamp('2014-02-21') < s) & (s < pd.Timestamp('2014-02-22'))]
1000 loops, best of 3: 1.23 ms per loop
In [23]: %timeit s.loc[pd.DatetimeIndex(s).normalize() == pd.Timestamp('2014-02-21')]
1000 loops, best of 3: 405 µs per loop
with a slightly larger s the results are more telling:
In [31]: s = pd.Series(pd.to_datetime(['2014-02-21 17:16:42', '2014-02-22 17:16:42'] * 1000))
In [32]: %timeit s.loc[s.str.startswith('2014-02-21')]
10 loops, best of 3: 105 ms per loop
In [33]: %timeit s.loc[(pd.Timestamp('2014-02-21') < s) & (s < pd.Timestamp('2014-02-22'))]
1000 loops, best of 3: 1.3 ms per loop
In [34]: %timeit s.loc[pd.DatetimeIndex(s).normalize() == pd.Timestamp('2014-02-21')]
1000 loops, best of 3: 694 µs per loop
Note: In your example the column df['date_time']
is s, and you would be doing df.loc[pd.DatetimeIndex(df['date_time']) == ...]
.
Upvotes: 3
Reputation: 616
Since it's a sting you cat try something along the lines of:
df[df['date_time'].str.startswith('2014-02-21')]
Upvotes: 0