Reputation: 850
In C++11, two types of "managed" pointer types were introduced - shared_ptr and unique_ptr. Let's now assume we have a set of classes that support a clone() method, such as foo->clone() would return a copy of the foo object. If your goal was to return a managed pointer from the clone() method, how would you allow the user of the interface to select which kind of pointer he wants to be returned?
As a sub-question, would you rather return a raw pointer from the clone() method and let the user construct either shared_ptr or unique_ptr by himself? If not, why?
Upvotes: 2
Views: 576
Reputation: 21
Something along this lines would give you the means to select the kind of smart pointer returned. Would probably be better if encapsulated in a mixin Clonable class template, for maintainability and reusability of the idea.
#include <iostream>
#include <memory>
class Base {
public:
virtual ~Base() {
std::cout << "deleting Base\n";
}
template <template <typename ...Args> class SmartPtr>
SmartPtr<Base> clone() {
return SmartPtr<Base>(this->inner_clone());
}
virtual void speak() const = 0;
private:
virtual Base *inner_clone() const = 0;
};
class C: public Base {
public:
~C() {
std::cout << "deleting C\n";
}
template <template <typename ...Args> class SmartPtr>
SmartPtr<C> clone() {
return SmartPtr<C>(this->inner_clone());
}
void speak() const {
std::cout << "I am C and I inherit from Base!\n";
}
private:
C *inner_clone() const override {
return new C(*this);
}
};
// End boilerplate.
int main()
{
auto original = C{};
// the declarations below should use auto, and are just explicitly typed to
// show the correct return type of clone();
std::shared_ptr<C> shared = original.clone<std::shared_ptr>();
std::unique_ptr<C> unique = original.clone<std::unique_ptr>();
// the declarations below show it working through conversion to a base class
// smart pointer type
std::shared_ptr<Base> sharedBase = original.clone<std::shared_ptr>();
std::unique_ptr<Base> uniqueBase = original.clone<std::unique_ptr>();
// the declarations below show it working through the base class for real
std::shared_ptr<Base> sharedBaseFromBase = sharedBase->clone<std::shared_ptr>();
std::unique_ptr<Base> uniqueBaseFromBase = uniqueBase->clone<std::unique_ptr>();
shared->speak();
unique->speak();
sharedBase->speak();
uniqueBase->speak();
sharedBaseFromBase->speak();
uniqueBaseFromBase->speak();
}
Compiles with gcc 4.8.1, and should in any compiler supporting variadics.
I would still prefer to simply return a unique_ptr and move the result into a shared_ptr, which would be automatic since the call to clone() is in itself an rvalue.
Upvotes: 0
Reputation: 477426
The standard smart pointer to manage a dynamic allocation is always unique_ptr
. By contrast, shared_ptr
is a very specific tool with specialized features (e.g. type-erased deleter, weak pointer observers) and higher costs (virtual dispatch, locked atomic operations) that should only be used when you definitely know you want it. Public raw pointers are a taboo out of principle, and so the natural clone
interface looks like this:
struct Base
{
// must have virtual destructor to destroy through base pointer
virtual ~Base() {}
// non-leaf classes are abstract
virtual std::unique_ptr<Base> clone() const = 0;
};
struct Derived : Base
{
virtual std::unique_ptr<Base> clone() const override
{
return std::unique_ptr<Derived>(new Derived(*this));
// or "return std::make_unique<Derived>(*this)" in C++14
}
};
(Unfortunately, we cannot use any kind of covariant return types here, since the template classes unique_ptr<Base>
and unique_ptr<Derived>
are unrelated. If you prefer to have a clone function that returns the derived type, you could add a non-virtual function like direct_clone
that returns a std::unique_ptr<Derived>
, and implement the virtual clone()
in terms of that.)
Upvotes: 3