Reputation: 10176
Im reading data from a csv, then looping it, then I want to divide it by the mean value to normalize it but getting a warning. The code is:
A = genfromtxt("train.txt", delimiter=';', skip_header=1)
lowid = A[:,1].min(axis=0)
highid = A[:,1].max(axis=0)
X = []
Y = []
for i in np.arange(lowid, highid):
I = A[A[:,1] == i][:, [0,2,3]]
meanp = np.mean(I[:,1]);
meanq = np.mean(I[:,2]);
for j in np.arange(I[:,0].min(axis=0)+2, I[:,0].max(axis=0)):
weekday = int(I[j,0]) % 7
# NORMALIZE:
P = I[j,1] / meanp
pP = I[j-1,1] / meanp
ppP = I[j-2,1] / meanp
X.append([weekday, P, pP, ppP])
Y.append(I[j,2])
the train.txt looks like this:
day;itemID;price;quantity
1;1;4.73;6
1;2;7.23;0
1;3;10.23;1
1;4;17.9;0
1;5;1.81;1
1;6;12.39;1
1;7;7.17;1
1;8;7.03;0
1;9;13.61;0
1;10;36.45;1
1;11;24.67;0
1;12;12.04;0
1;13;11.85;0
The warnings:
weekday = int(I[j,0]) % 7
DeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
P = I[j,1] / meanp
DeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
pP = I[j-1,1] / meanp
DeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
ppP = I[j-2,1] / meanp
DeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
Y.append(I[j,2])
DeprecationWarning: using a non-integer number instead of an integer will result in an error in the future
What is the problem? Thanks
EDIT Okay that was a pretty fast fix myself:
The j
has got to be of integer type. I fixed it like this:
for j in range(int(I[:,0].min(axis=0))+2, int(I[:,0].max(axis=0))):
good solution like this? Im new to python...
Upvotes: 2
Views: 4551
Reputation: 10176
Okay that was a pretty fast fix myself: The j
has got to be of integer type.
I fixed it like this:
for j in range(int(I[:,0].min(axis=0))+2, int(I[:,0].max(axis=0))):
using the python range
function OR explicitely defining the data-type for arange
like this (thanks @Davidmh):
for j in np.arange(I[:,0].min(axis=0)+2, I[:,0].max(axis=0), dtype=np.int):
Upvotes: 3