Reputation: 5174
I have a problem in some C code, I assume it belonged here over the Mathematics exchange.
I have an array of changes in x and y position generated by a user dragging a mouse, how could I determine if a straight line was drawn or not.
I am currently using linear regression, is there a better(more efficient) way to do this?
EDIT: Hough transformation attempt:
#define abSIZE 100
#define ARRAYSIZE 10
int A[abSIZE][abSIZE]; //points in the a-b plane
int dX[10] = {0, 10, 13, 8, 20, 18, 19, 22, 12, 23};
int dY[10] = {0, 2, 3, 1, -1, -2, 0, 0, 3, 1};
int absX[10]; //absolute positions
int absY[10];
int error = 0;
int sumx = 0, sumy = 0, i;
//Convert deltas to absolute positions
for (i = 0; i<10; i++) {
absX[i] = sumx+=dX[i];
absY[i] = sumy+=dY[i];
}
//initialise array to zero
int a, b, x, y;
for(a = -abSIZE/2; a < abSIZE/2; a++) {
for(b = -abSIZE/2; b< abSIZE/2; b++) {
A[a+abSIZE/2][b+abSIZE/2] = 0;
}
}
//Hough transform
int aMax = 0;
int bMax = 0;
int highest = 0;
for(i=0; i<10; i++) {
x = absX[i];
y = absX[i];
for(a = -abSIZE/2; a < abSIZE/2; a++) {
for(b = -abSIZE/2; b< abSIZE/2; b++) {
if (a*x + b == y) {
A[a+abSIZE/2][b+abSIZE/2] += 1;
if (A[a+abSIZE/2][b+abSIZE/2] > highest) {
highest++; //highest = A[a+abSIZE/2][b+abSIZE/2]
aMax = a;
bMax = b;
}
}
}
}
}
printf("Line is Y = %d*X + %d\n",aMax,bMax);
//Calculate MSE
int e;
for (i = 0; i < ARRAYSIZE; i++) {
e = absY[i] - (aMax * absX[i] + bMax);
e = (int) pow((double)e, 2);
error += e;
}
printf("error is: %d\n", error);
Upvotes: 2
Views: 276
Reputation: 7562
Though linear regression sounds like a perfectly reasonable way to solve the task, here's another suggestion: Hough transform, which might be somewhat more robust against outliers. Here is a very rough sketch of how this can be applied:
A
with zeros(x, y)
in a x-y-plane (e.g. start with (0,0))a
and b
such that a*x + b = y
. All such points (a,b) define a straight line in the a-b-planeA
, which represents the quantized planeA
, which will correspond to the parameters (a, b)
of the straight line in the x-y-plane that has most support by the original pointsMore details e.g. here:
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MARSHALL/node32.html
Edit: here's a quote from Wikipedia that explains why it's better to use a different parametrization to deal with vertical lines (where a
would become infinite in ax+b=y
):
However, vertical lines pose a problem. They are more naturally described as x = a and would give rise to unbounded values of the slope parameter m. Thus, for computational reasons, Duda and Hart proposed the use of a different pair of parameters, denoted
r
andtheta
, for the lines in the Hough transform. These two values, taken in conjunction, define a polar coordinate.
Thanks to Zaw Lin for pointing this out.
Upvotes: 2