Reputation: 7198
I would like to vectorize this NumPy operation:
for j in range(yt):
for i in range(xt):
y[j, i] = x[idx[j, i], j, i]
where idx
contains axis-0 index to an x
slice. Is there some simple way to do this?
Upvotes: 5
Views: 195
Reputation: 221574
Here's one approach using linear indexing
-
zt,yt,xt = x.shape
out = x.reshape(zt,-1)[idx.ravel(),np.arange(yt*xt)].reshape(-1,xt)
Runtime tests & verify output
This section compares the proposed approach in this post and the other orgid based solution
on performance and also verifies the outputs.
Function definitions -
def original_app(x,idx):
_,yt,xt = x.shape
y = np.zeros((yt,xt))
for j in range(yt):
for i in range(xt):
y[j, i] = x[idx[j, i], j, i]
return y
def ogrid_based(x,idx):
_,yt,xt = x.shape
J, I = np.ogrid[:yt, :xt]
return x[idx, J, I]
def reshape_based(x,idx):
zt,yt,xt = x.shape
return x.reshape(zt,-1)[idx.ravel(),np.arange(yt*xt)].reshape(-1,xt)
Setup inputs -
In [56]: # Inputs
...: zt,yt,xt = 100,100,100
...: x = np.random.rand(zt,yt,xt)
...: idx = np.random.randint(0,zt,(yt,xt))
...:
Verify outputs -
In [57]: np.allclose(original_app(x,idx),ogrid_based(x,idx))
Out[57]: True
In [58]: np.allclose(original_app(x,idx),reshape_based(x,idx))
Out[58]: True
Timings -
In [68]: %timeit original_app(x,idx)
100 loops, best of 3: 6.97 ms per loop
In [69]: %timeit ogrid_based(x,idx)
1000 loops, best of 3: 391 µs per loop
In [70]: %timeit reshape_based(x,idx)
1000 loops, best of 3: 230 µs per loop
Upvotes: 0
Reputation: 97291
You can use:
J, I = np.ogrid[:yt, :xt]
x[idx, J, I]
Here is the test:
import numpy as np
yt, xt = 3, 5
x = np.random.rand(10, 6, 7)
y = np.zeros((yt, xt))
idx = np.random.randint(0, 10, (yt, xt))
for j in range(yt):
for i in range(xt):
y[j, i] = x[idx[j, i], j, i]
J, I = np.ogrid[:yt, :xt]
np.all(x[idx, J, I] == y)
Upvotes: 8