Reputation: 560
What is the best (elegant and efficient) way in Theano to convert a vector of indices to a matrix of zeros and ones, in which every row is the one-of-N representation of an index?
v = t.ivector() # the vector of indices
n = t.scalar() # the width of the matrix
convert = <your code here>
f = theano.function(inputs=[v, n], outputs=convert)
Example:
n_val = 4
v_val = [1,0,3]
f(v_val, n_val) = [[0,1,0,0],[1,0,0,0],[0,0,0,1]]
Upvotes: 4
Views: 1594
Reputation: 10865
There's now a built in function for this theano.tensor.extra_ops.to_one_hot
.
y = tensor.as_tensor([3,2,1])
fn = theano.function([], tensor.extra_ops.to_one_hot(y, 4))
print fn()
# [[ 0. 0. 0. 1.]
# [ 0. 0. 1. 0.]
# [ 0. 1. 0. 0.]]
Upvotes: 1
Reputation: 5071
I didn't compare the different option, but you can also do it like this. It don't request extra memory.
import numpy as np
import theano
n_val = 4
v_val = np.asarray([1,0,3])
idx = theano.tensor.lvector()
z = theano.tensor.zeros((idx.shape[0], n_val))
one_hot = theano.tensor.set_subtensor(z[theano.tensor.arange(idx.shape[0]), idx], 1)
f = theano.function([idx], one_hot)
print f(v_val)[[ 0. 1. 0. 0.]
[ 1. 0. 0. 0.]
[ 0. 0. 0. 1.]]
Upvotes: 5
Reputation: 560
It's as simple as:
convert = t.eye(n,n)[v]
There still might be a more efficient solution that doesn't require building the whole identity matrix. This might be problematic for large n and short v's.
Upvotes: 1