Reputation: 4941
I have a pretty big numpy.ndarray
. Its basically an array of arrays. I want to convert it to a pandas.DataFrame
. What I want to do is in the code below
from pandas import DataFrame
cache1 = DataFrame([{'id1': 'ABC1234'}, {'id1': 'NCMN7838'}])
cache2 = DataFrame([{'id2': 3276827}, {'id2': 98567498}, {'id2': 38472837}])
ndarr = [[4.3, 5.6, 6.7], [3.2, 4.5, 2.1]]
arr = []
for idx, i in enumerate(ndarr):
id1 = cache1.ix[idx].id1
for idx2, val in enumerate(i):
id2 = cache2.ix[idx2].id2
if val > 0:
arr.append(dict(id1=id1, id2=id2, value=val))
df = DataFrame(arr)
print(df.head())
I am mapping the index of the outer array and the inner array to index of two DataFrame
s to get certain IDs.
cache1
and cache2
are pandas.DataFrame
. Each has ~100k
rows.
This takes really really long, like a few hours to complete. Is there some way I can speed it up?
Upvotes: 2
Views: 5841
Reputation: 54340
I suspect your ndarr
, if expressed as a 2d np.array
, always has the shape of n,m
, where n
is the length of cache1.id1
and m
is the length of cache2.id2
. And the last entry in cache2, should be {'id2': 38472837}
instead of {'id': 38472837}
. If so, the following simple solution may be all what is needed:
In [30]:
df=pd.DataFrame(np.array(ndarr).ravel(),
index=pd.MultiIndex.from_product([cache1.id1.values, cache2.id2.values],names=['idx1', 'idx2']),
columns=['val'])
In [33]:
print df.reset_index()
idx1 idx2 val
0 ABC1234 3276827 4.3
1 ABC1234 98567498 5.6
2 ABC1234 38472837 6.7
3 NCMN7838 3276827 3.2
4 NCMN7838 98567498 4.5
5 NCMN7838 38472837 2.1
[6 rows x 3 columns]
Actually, I also think, that keep it having the MultiIndex
may be a better idea.
Upvotes: 2
Reputation: 353059
Something like this should work:
ndarr = np.asarray(ndarr) # if ndarr is actually an array, skip this
fast_df = pd.DataFrame({"value": ndarr.ravel()})
i1, i2 = [i.ravel() for i in np.indices(ndarr.shape)]
fast_df["id1"] = cache1["id1"].loc[i1].values
fast_df["id2"] = cache2["id2"].loc[i2].values
which gives
>>> fast_df
value id1 id2
0 4.3 ABC1234 3276827
1 5.6 ABC1234 98567498
2 6.7 ABC1234 NaN
3 3.2 NCMN7838 3276827
4 4.5 NCMN7838 98567498
5 2.1 NCMN7838 NaN
And then if you really want to drop the zero values, you can keep only the nonzero ones using fast_df = fast_df[fast_df['value'] != 0]
.
Upvotes: 0