Reputation: 469
I have obtatained this matrix in Python using Sympy:
> Matrix([[-THETA*l*m2*omega**2*cos(omega*t) + X*k*cos(omega*t) -
> X*omega**2*(m1 + m2)*cos(omega*t)], [THETA*g*cos(omega*t) -
> THETA*l*omega**2*cos(omega*t) - X*omega**2*cos(omega*t)]])
I now need to find an expression like:
[coefficient matrix]*(unknowns vectors)
Where my (unknowns vector) is:
Matrix([[X],[THETA]]).
I tried to use solve, simplify and collect from Sympy without success (I can only get errors or a [] return).
Upvotes: 1
Views: 76
Reputation: 91580
Take the Jacobian:
In [16]: a.jacobian(Matrix([X, THETA]))
Out[16]:
⎡ 2 2 ⎤
⎢k⋅cos(ω⋅t) - ω ⋅(m₁ + m₂)⋅cos(ω⋅t) -l⋅m₂⋅ω ⋅cos(ω⋅t) ⎥
⎢ ⎥
⎢ 2 2 ⎥
⎣ -ω ⋅cos(ω⋅t) g⋅cos(ω⋅t) - l⋅ω ⋅cos(ω⋅t)⎦
In [17]: a.jacobian(Matrix([X, THETA]))*Matrix([X, THETA])
Out[17]:
⎡ 2 ⎛ 2 ⎞⎤
⎢- THETA⋅l⋅m₂⋅ω ⋅cos(ω⋅t) + X⋅⎝k⋅cos(ω⋅t) - ω ⋅(m₁ + m₂)⋅cos(ω⋅t)⎠⎥
⎢ ⎥
⎢ ⎛ 2 ⎞ 2 ⎥
⎣ THETA⋅⎝g⋅cos(ω⋅t) - l⋅ω ⋅cos(ω⋅t)⎠ - X⋅ω ⋅cos(ω⋅t) ⎦
In [22]: a
Out[22]:
⎡ 2 2 ⎤
⎢- THETA⋅l⋅m₂⋅ω ⋅cos(ω⋅t) + X⋅k⋅cos(ω⋅t) - X⋅ω ⋅(m₁ + m₂)⋅cos(ω⋅t)⎥
⎢ ⎥
⎢ 2 2 ⎥
⎣ THETA⋅g⋅cos(ω⋅t) - THETA⋅l⋅ω ⋅cos(ω⋅t) - X⋅ω ⋅cos(ω⋅t) ⎦
By the way, if you use theta
or Theta
(not all uppercase), SymPy will print it as the actual greek letter theta:
In [24]: symbols('theta')
Out[24]: θ
Upvotes: 1