8one6
8one6

Reputation: 13768

DataFrame.index.levels shows "extra" values after paring down dataframe

Let's say I have a large dataframe large that has a MultiIndex on the rows. I pare down this dataframe by selecting only some of the rows and assign the result to small. In particular, small has fewer distinct values in the 0th level of its MultiIndex on the rows than large.

I then want a list of the distinct values in the 0th level of the MultiIndex on the rows of small so I call small.index.levels[0]. The result is strange: it returns the same thing as large.index.levels[0] despite the fact that there should be fewer values.

What's going on?

MWE:

import pandas as pd
import numpy as np

np.random.seed(0)

idx = pd.MultiIndex.from_product([['John', 'Josh', 'Alex'], list('abcde')], 
                                 names=['Person', 'Letter'])
large = pd.DataFrame(data=np.random.randn(15, 2), 
                     index=idx, 
                     columns=['one', 'two'])
small = large.loc[['Jo'==d[0:2] for d in large.index.get_level_values('Person')]]

print small.index.levels[0]
print large.index.levels[0]

Output:

Index([u'Alex', u'John', u'Josh'], dtype='object')
Index([u'Alex', u'John', u'Josh'], dtype='object')

Expected output:

Index([u'John', u'Josh'], dtype='object')
Index([u'Alex', u'John', u'Josh'], dtype='object')

Upvotes: 4

Views: 364

Answers (2)

ilCatania
ilCatania

Reputation: 336

I found this question after having the same problem, posted it as a bug on the pandas issues tracker, and was told it's expected behaviour as pandas only updates codes when slicing MultiIndex, not levels. You can use MultiIndex.remove_unused_levels() (api link) to drop the levels that are no longer in the slice.

So in your example:

small = large.loc[['Jo'==d[0:2] for d in large.index.get_level_values('Person')]]
small.index = small.index.remove_unused_levels()

print(small.index.levels[0])
print(large.index.levels[0])

Upvotes: 0

Jeff
Jeff

Reputation: 129008

More efficient to do this.

In [43]: large[large.index.get_level_values('Person').to_series().str.startswith('Jo').values]
Out[43]: 
                    one       two
Person Letter                    
John   a       1.764052  0.400157
       b       0.978738  2.240893
       c       1.867558 -0.977278
       d       0.950088 -0.151357
       e      -0.103219  0.410599
Josh   a       0.144044  1.454274
       b       0.761038  0.121675
       c       0.443863  0.333674
       d       1.494079 -0.205158
       e       0.313068 -0.854096

To answer your question. That is an implementation detail. Use .get_level_values() (rather than accessing the internal .levels

You can do this if you want.

In [13]: small.index.get_level_values('Person').unique()
Out[13]: array(['John', 'Josh'], dtype=object)

In [14]: large.index.get_level_values('Person').unique()
Out[14]: array(['John', 'Josh', 'Alex'], dtype=object)

Upvotes: 1

Related Questions