Reputation: 2185
I am trying to compute the derivative for my homework assignment, and the homework is using a Summation series where i have shown in the first line of my code.
Mathematica expanded all terms for me in this series. I am wondering if there is a way i can make it return the result using an Epsilon sign.
f[x_]=Sum[k*Exp[-Subscript[a,k]*x^3],{k,1,7}]
E^(-x^3 Subscript[a, 1]) + 2 E^(-x^3 Subscript[a, 2]) +
3 E^(-x^3 Subscript[a, 3]) + 4 E^(-x^3 Subscript[a, 4]) +
5 E^(-x^3 Subscript[a, 5]) + 6 E^(-x^3 Subscript[a, 6]) +
7 E^(-x^3 Subscript[a, 7])
f'[x]
-3 E^(-x^3 Subscript[a, 1]) x^2 Subscript[a, 1] -
6 E^(-x^3 Subscript[a, 2]) x^2 Subscript[a, 2] -
9 E^(-x^3 Subscript[a, 3]) x^2 Subscript[a, 3] -
12 E^(-x^3 Subscript[a, 4]) x^2 Subscript[a, 4] -
15 E^(-x^3 Subscript[a, 5]) x^2 Subscript[a, 5] -
18 E^(-x^3 Subscript[a, 6]) x^2 Subscript[a, 6] -
21 E^(-x^3 Subscript[a, 7]) x^2 Subscript[a, 7]
Many thanks!
Upvotes: 1
Views: 2895
Reputation: 8655
Use HoldForm
to display the sum:-
HoldForm[Sum[k*Exp[-Subscript[a, k]*x^3], {k, 1, 7}]]
You can use E
instead of Exp
to display output as e
. TraditionalForm
may further improve the appearance:-
HoldForm[Sum[k*E^(-Subscript[a, k]*x^3), {k, 1, 7}]] // TraditionalForm
Upvotes: 2