Reputation: 53047
Suppose I have two 4-bit values, ABCD
and abcd
. How to interleave it, so it becomes AaBbCcDd
, using bitwise operators? Example in pseudo-C:
nibble a = 0b1001;
nibble b = 0b1100;
char c = foo(a,b);
print_bits(c);
// output: 0b11010010
Note: 4 bits is just for illustration, I want to do this with two 32bit ints.
Upvotes: 4
Views: 550
Reputation: 2618
I have used the 2 tricks/operations used in this post How do you set, clear, and toggle a single bit? of setting a bit at particular index
and checking the bit at particular index
.
The following code is implemented using these 2 operations only.
int a = 0b1001;
int b = 0b1100;
long int c=0;
int index; //To specify index of c
int bit,i;
//Set bits in c from right to left.
for(i=32;i>=0;i--)
{
index=2*i+1; //We have to add the bit in c at this index
//Check a
bit=a&(1<<i); //Checking whether the i-th bit is set in a
if(bit)
c|=1<<index; //Setting bit in c at index
index--;
//Check b
bit=b&(1<<i); //Checking whether the i-th bit is set in b
if(bit)
c|=1<<index; //Setting bit in c at index
}
printf("%ld",c);
Output: 210
which is 0b11010010
Upvotes: 1
Reputation: 3788
This is called the perfect shuffle operation, and it's discussed at length in the Bible Of Bit Bashing, Hacker's Delight by Henry Warren, section 7-2 "Shuffling Bits."
Assuming x
is a 32-bit integer with a
in its high-order 16 bits and b
in its low-order 16 bits:
unsigned int x = (a << 16) | b; /* put a and b in place */
the following straightforward C-like code accomplishes the perfect shuffle:
x = (x & 0x0000FF00) << 8 | (x >> 8) & 0x0000FF00 | x & 0xFF0000FF;
x = (x & 0x00F000F0) << 4 | (x >> 4) & 0x00F000F0 | x & 0xF00FF00F;
x = (x & 0x0C0C0C0C) << 2 | (x >> 2) & 0x0C0C0C0C | x & 0xC3C3C3C3;
x = (x & 0x22222222) << 1 | (x >> 1) & 0x22222222 | x & 0x99999999;
He also gives an alternative form which is faster on some CPUs, and (I think) a little more clear and extensible:
unsigned int t; /* an intermediate, temporary variable */
t = (x ^ (x >> 8)) & 0x0000FF00; x = x ^ t ^ (t << 8);
t = (x ^ (x >> 4)) & 0x00F000F0; x = x ^ t ^ (t << 4);
t = (x ^ (x >> 2)) & 0x0C0C0C0C; x = x ^ t ^ (t << 2);
t = (x ^ (x >> 1)) & 0x22222222; x = x ^ t ^ (t << 1);
I see you have edited your question to ask for a 64-bit result from two 32-bit inputs. I'd have to think about how to extend Warren's technique. I think it wouldn't be too hard, but I'd have to give it some thought. If someone else wanted to start here and give a 64-bit version, I'd be happy to upvote them.
EDITED FOR 64 BITS
I extended the second solution to 64 bits in a straightforward way. First I doubled the length of each of the constants. Then I added a line at the beginning to swap adjacent double-bytes and intermix them. In the following 4 lines, which are pretty much the same as the 32-bit version, the first line swaps adjacent bytes and intermixes, the second line drops down to nibbles, the third line to double-bits, and the last line to single bits.
unsigned long long int t; /* an intermediate, temporary variable */
t = (x ^ (x >> 16)) & 0x00000000FFFF0000ull; x = x ^ t ^ (t << 16);
t = (x ^ (x >> 8)) & 0x0000FF000000FF00ull; x = x ^ t ^ (t << 8);
t = (x ^ (x >> 4)) & 0x00F000F000F000F0ull; x = x ^ t ^ (t << 4);
t = (x ^ (x >> 2)) & 0x0C0C0C0C0C0C0C0Cull; x = x ^ t ^ (t << 2);
t = (x ^ (x >> 1)) & 0x2222222222222222ull; x = x ^ t ^ (t << 1);
Upvotes: 8
Reputation: 75599
Here is a loop-based solution that is hopefully more readable than some of the others already here.
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
uint64_t interleave(uint32_t a, uint32_t b) {
uint64_t result = 0;
int i;
for (i = 0; i < 31; i++) {
result |= (a >> (31 - i)) & 1;
result <<= 1;
result |= (b >> (31 - i)) & 1;
result <<= 1;
}
// Skip the last left shift.
result |= (a >> (31 - i)) & 1;
result <<= 1;
result |= (b >> (31 - i)) & 1;
return result;
}
void printBits(uint64_t a) {
int i;
for (i = 0; i < 64; i++)
printf("%lu", (a >> (63 - i)) & 1);
puts("");
}
int main(){
uint32_t a = 0x9;
uint32_t b = 0x6;
uint64_t c = interleave(a,b);
printBits(a);
printBits(b);
printBits(c);
}
Upvotes: 1
Reputation: 30146
Like so:
#include <limits.h>
typedef unsigned int half;
typedef unsigned long long full;
full mix_bits(half a,half b)
{
full result = 0;
for (int i=0; i<sizeof(half)*CHAR_BIT; i++)
result |= (((a>>i)&1)<<(2*i+1))|(((b>>i)&1)<<(2*i+0));
return result;
}
Upvotes: 1
Reputation: 145899
From Stanford "Bit Twiddling Hacks" page: https://graphics.stanford.edu/~seander/bithacks.html#InterleaveTableObvious
uint32_t x = /*...*/, y = /*...*/;
uint64_t z = 0;
for (int i = 0; i < sizeof(x) * CHAR_BIT; i++) // unroll for more speed...
{
z |= (x & 1U << i) << i | (y & 1U << i) << (i + 1);
}
Look at the page they propose different and faster algorithms to achieve the same.
Upvotes: 4