Reputation: 25
I came across this video which is discussing how most recursive functions can be written with for loops but when I thought about it, I couldn't see the logical difference between the two. I found this topic here but it only focuses on the practical difference as do many other similar topics on the web so what is the logical difference in the way a loop and a recursion are handled?
Upvotes: 1
Views: 401
Reputation: 125
One way to think through this is that the choice for recursion or iteration depends on how you think about the problem being solved. Certain "ways of thinking" lead more naturally to recursive solutions, and other ways of thinking lead to more iterative solutions. For any problem, you can in principle think in a way that gives you a recursive solution or a way that gives you an iterative solution. (Sometimes the iterative solution will just end up simulating a recursion stack, but there is no actual recursion there.)
Here's an example. You have an array of integers (positive or negative), and you want to find the maximum segment sum. A segment is a piece of the array that is contiguous. So in the array [3, -4, 2, 1, -2, 4], the maximum segment sum is 5, and you get that from the segment [2, 1, -2, 4]; its sum is 5.
OK - so how might we solve this problem? One thing you might do is reason like this: "if I knew the maximum segment sum in the left half, and the maximum segment sum in the right half, then maybe I could somehow jam those together and figure out the maximum segment sum overall". This idea would require you to find the maximum segment sum on the two subhalves, and this is a smaller instance of the original problem. This is recursion, and a direct translation of this idea into code would therefore be recursive.
But the maximum segment sum problem isn't "recursive" or "iterative" -- it can be both, depending on how you think about the solution. I gave a recursive thought process above. Here is an iterative process: "well, if I add up the elements in each of the segments that start at some index i and end at some index j, I can just take the maximum of these to solve the problem". And directly trying to code this approach would give you triply nested loops (and a bad mark on an assignment because it's horribly inefficient!).
So, the same problem, depending on how the problem is conceptualized, can lead to a recursive or iterative solution. Now, I happened to choose a problem where there are many ways of solving it, and where there are reasonable recursive and iterative solutions. Some problems, however, admit only one type of solution, and that solution may be most naturally implemented using recursion or iteration. For example, if I asked you to write a function that keeps asking the user to enter a letter until they enter y or n, you might start thinking: "keep repeating the prompt and asking for input..." and before you know it you have some iterative code. Perhaps you might instead think recursively: "if the user enters y or n, I am done; otherwise ask the user for y or n"... in which case you'd generate a recursive algorithm. But the recursion here doesn't give you much: it unnecessarily uses a stack and doesn't make the program any faster. (Recursion sometimes makes it easier to prove correctness, in which case you might present something recursively even though you could alternately give a reasonable iterative solution.)
Upvotes: 0
Reputation: 19853
Bottom line up front -- recursion is more versatile but in practice is generally less efficient than looping.
A loop could in principle always be implemented as a recursion if you wished to do so. In practice the limits of stack resources put serious constraints on the size of the problems you can address. I can and have built loops that iterate a billion times, something I'd never try with recursion unless I was certain the compiler could and would convert the recursion into a loop. Because of the stack limits and efficiency, people often try to find a looping equivalent for recursions.
Tail recursions can always be converted to loops. However, there are recursions that can't be converted. As an example, I work with statistical design of experiments. Sometimes a large design is constructed by "crossing" several smaller sub-designs. Crossing is where you concatenate every row of a second design to each row of the first. For two sub-designs, all this needs is simple nested looping, but for three or more designs you need to increase the level of nesting, adding one level of nesting for each additional sub-design. So while this is nested looping in principle, in practice the amount of nesting is variable. If you tried to implement it with looping you'd have to revise your program to add/subtract nested loops every time you were dealing with a different number of sub-designs to be crossed, so you can't write an immutable loop-based version. This can easily be implemented with recursion. In this case, I'm happy to trade a slight amount of efficiency, because I wrote and debugged the code 6 years ago and haven't had to revise it since, despite creating lots of crossed designs of varying complexity since then.
Upvotes: 1