Reputation: 3191
So the situation is that I have multiple methods, which might be threaded simaltenously, but all need their own lock against being re-threaded until they have run. They are established by initialising a class with some dataprocessing options:
class InfrequentDataDaemon(object): pass
class FrequentDataDaemon(object): pass
def addMethod(name):
def wrapper(f):
setattr(processor, f.__name__, staticmethod(f))
return f
return wrapper
class DataProcessors(object):
lock = threading.Lock()
def __init__(self, options):
self.common_settings = options['common_settings']
self.data_processing_configurations = options['data_processing_configurations'] #Configs for each processing method
self.data_processing_types = options['data_processing_types']
self.Data_Processsing_Functions ={}
#I __init__ each processing method as a seperate function so that it can be locked
for type in options['data_processing_types']:
def bindFunction1(name):
def func1(self, data=None, lock=None):
config = self.data_processing_configurations[data['type']] #I get the right config for the datatype
with lock:
FetchDataBaseStuff(data['type'])
#I don't want this to be run more than once at a time per DataProcessing Type
# But it's fine if multiple DoSomethings run at once, as long as each DataType is different!
DoSomething(data, config)
WriteToDataBase(data['type'])
func1.__name__ = "Processing_for_{}".format(type)
self.Data_Processing_Functions[func1.__name__] = func1 #Add this function to the Dictinary object
bindFunction1(type)
#Then I add some methods to a daemon that are going to check if our Dataprocessors need to be called
def fast_process_types(data):
if not example_condition is True: return
if not data['type'] in self.data_processing_types: return #Check that we are doing something with this type of data
threading.Thread(target=self.Data_Processing_Functions["Processing_for_{}".format(data['type'])], args=(self,data, lock)).start()
def slow_process_types(data):
if not some_other_condition is True: return
if not data['type'] in self.data_processing_types: return #Check that we are doing something with this type of data
threading.Thread(target=self.Data_Processing_Functions["Processing_for_{}".format(data['type'])], args=(self,data, lock)).start()
addMethod(InfrequentDataDaemon)(slow_process_types)
addMethod(FrequentDataDaemon)(fast_process_types)
The idea is to lock each method in
DataProcessors.Data_Processing_Functions
- so that each method is only accessed by one thread at a time (and the rest of the threads for the same method are queued). How does Locking need to be set up to achieve this effect?
Upvotes: 0
Views: 6208
Reputation: 94881
I'm not sure I completely follow what you're trying to do here, but could you just create a separate threading.Lock
object for each type?
class DataProcessors(object):
def __init__(self, options):
self.common_settings = options['common_settings']
self.data_processing_configurations = options['data_processing_configurations'] #Configs for each processing method
self.data_processing_types = options['data_processing_types']
self.Data_Processsing_Functions ={}
self.locks = {}
#I __init__ each processing method as a seperate function so that it can be locked
for type in options['data_processing_types']:
self.locks[type] = threading.Lock()
def bindFunction1(name):
def func1(self, data=None):
config = self.data_processing_configurations[data['type']] #I get the right config for the datatype
with self.locks[data['type']]:
FetchDataBaseStuff(data['type'])
DoSomething(data, config)
WriteToDataBase(data['type'])
func1.__name__ = "Processing_for_{}".format(type)
self.Data_Processing_Functions[func1.__name__] = func1 #Add this function to the Dictinary object
bindFunction1(type)
#Then I add some methods to a daemon that are going to check if our Dataprocessors need to be called
def fast_process_types(data):
if not example_condition is True: return
if not data['type'] in self.data_processing_types: return #Check that we are doing something with this type of data
threading.Thread(target=self.Data_Processing_Functions["Processing_for_{}".format(data['type'])], args=(self,data)).start()
def slow_process_types(data):
if not some_other_condition is True: return
if not data['type'] in self.data_processing_types: return #Check that we are doing something with this type of data
threading.Thread(target=self.Data_Processing_Functions["Processing_for_{}".format(data['type'])], args=(self,data)).start()
addMethod(InfrequentDataDaemon)(slow_process_types)
addMethod(FrequentDataDaemon)(fast_process_types)
Upvotes: 1