Maria
Maria

Reputation: 243

How to calculate average of a variable by hour in R

I'm having trouble when trying to calculate the average temperature by hour.

I have a data frame with date, time (hh:mm:ss p.m./a.m.)and temperature. What I need is to extract the mean temperature by hour in order to plot daily variation of temperature.

I'm new to R, but did a try with what I know: I first tried by transforming hours into numbers, then extracting the first two characters, and then to calculate the mean but it didn't work very well. Moreover I have so many files to analize that it would be much better to have something more automated and clean than the "solution" I found.

I believe it must be a better way to calculate averages by hours in R so I've been looking for the answer in other posts here. Unfortunately I couldn't find a clear answer regarding extracting statistics from time data.

My data looks like this

          date     hour temperature
1   28/12/2013 13:03:01      41.572
2   28/12/2013 13:08:01      46.059
3   28/12/2013 13:13:01       48.55
4   28/12/2013 13:18:01      49.546
5   28/12/2013 13:23:01      49.546
6   28/12/2013 13:28:01      49.546
7   28/12/2013 13:33:01      50.044
8   28/12/2013 13:38:01      50.542
9   28/12/2013 13:43:01      50.542
10  28/12/2013 13:48:01       51.04
11  28/12/2013 13:53:01      51.538
12  28/12/2013 13:58:01      51.538
13  28/12/2013 14:03:01      50.542
14  28/12/2013 14:08:01       51.04
15  28/12/2013 14:13:01       51.04
16  28/12/2013 14:18:01      52.534
17  28/12/2013 14:23:01      53.031
18  28/12/2013 14:28:01      53.031
19  28/12/2013 14:33:01      53.031
20  28/12/2013 14:38:01      51.538
21  28/12/2013 14:43:01      53.031
22  28/12/2013 14:48:01      53.529
etc (24hs data)

And I would like R to calculate average per hour (without taking into account differences in minutes or seconds, just by hour)

Any suggestion? Thank you very much in advance!

Regards, Maria

Upvotes: 7

Views: 24870

Answers (3)

TichPi
TichPi

Reputation: 146

Try this example:

library(foqat)
met2=avri(met[,c(1,2)], bkip="1 hour", mode="ncycle", value=24)

#plot it
geom_avri(
    met2,
    cave=2, csd=3,
    alpha=0.5, lcc="#0050b3", rff="#40a9ff", 
    xlab="Hour of day", ylab=bquote(Temp~" "~(degree*C))
)

enter image description here

Upvotes: 0

Mark Rajcok
Mark Rajcok

Reputation: 364677

Combine the date and hour columns into a POSIXct column and cut() by hourly breaks:

df <- read.table(header=TRUE, stringsAsFactors=FALSE, text="
date hour temperature
28/12/2013 13:03:01  41.572
28/12/2013 13:08:01  46.059
28/12/2013 13:13:01  48.55
28/12/2013 13:18:01  49.546
28/12/2013 13:23:01  49.546
28/12/2013 13:28:01  49.546
28/12/2013 13:33:01  50.044
28/12/2013 13:38:01  50.542
28/12/2013 13:43:01  50.542
28/12/2013 13:48:01  51.04
28/12/2013 13:53:01  51.538
28/12/2013 13:58:01  51.538
28/12/2013 14:03:01  50.542
28/12/2013 14:08:01  51.04
28/12/2013 14:13:01  51.04
28/12/2013 14:18:01  52.534
28/12/2013 14:23:01  53.031
28/12/2013 14:28:01  53.031
28/12/2013 14:33:01  53.031
28/12/2013 14:38:01  51.538
28/12/2013 14:43:01  53.031
28/12/2013 14:48:01  53.529
28/12/2013 15:01:01  50.77")

df$datehour <- cut(as.POSIXct(paste(df$date, df$hour),
   format="%d/%m/%Y %H:%M:%S"), breaks="hour") 
head(df)
        date     hour temperature            datehour
1 28/12/2013 13:03:01      41.572 2013-12-28 13:00:00
2 28/12/2013 13:08:01      46.059 2013-12-28 13:00:00
3 28/12/2013 13:13:01      48.550 2013-12-28 13:00:00
4 28/12/2013 13:18:01      49.546 2013-12-28 13:00:00
5 28/12/2013 13:23:01      49.546 2013-12-28 13:00:00
6 28/12/2013 13:28:01      49.546 2013-12-28 13:00:00

Now aggregate by that hourly column:

means <- aggregate(temperature ~ datehour, df, mean)
head(means)
             datehour temperature
1 2013-12-28 13:00:00    49.17192
2 2013-12-28 14:00:00    52.23470
3 2013-12-28 15:00:00    50.77000

plot(as.POSIXct(means$datehour), means$temperature, type="l", las=1,
     main="Hourly Avg Temperatures", xlab="Hour", ylab="")

But, for time series data, I like to use package xts:

require(xts)
df.xts <- xts(df$temperature, as.POSIXct(paste(df$date, df$hour),
      format="%d/%m/%Y %H:%M:%S"))
head(df.xts)
                      [,1]
2013-12-28 13:03:01 41.572
2013-12-28 13:08:01 46.059
2013-12-28 13:13:01 48.550
2013-12-28 13:18:01 49.546
2013-12-28 13:23:01 49.546
2013-12-28 13:28:01 49.546

means <- period.apply(df.xts, endpoints(df.xts, "hours"), mean)
head(means)
                        [,1]
2013-12-28 13:58:01 49.17192
2013-12-28 14:48:01 52.23470
2013-12-28 15:01:01 50.77000

Notice how the timestamps are the last entry of each hour. We can align the timestamps (down) to the beginning of the hour with this function:

align.time.down = function(x,n){ index(x) = index(x)-n; align.time(x,n) }
means.rounded <- align.time.down(means, 60*60)  
         # 2nd argument is the number of seconds to adjust/round to,
         # just like function align.time()

head(means.rounded)
                        [,1]
2013-12-28 13:00:00 49.17192
2013-12-28 14:00:00 52.23470
2013-12-28 15:00:00 50.77000

plot(means.rounded, las=1, main="Hourly Avg Temperatures")

enter image description here

Upvotes: 15

It would always easier if sample data and expected output is given in the question.

Solution with Data.table package

require(data.table)
data <- fread('temp.csv',sep=',') #Assuming your data is in temp.csv
#if above step not executed, convert the data frame to data.table 
data <- data.table(data)
> str(data)
Classes ‘data.table’ and 'data.frame':  12 obs. of  3 variables:
$ date       : chr  "28/12/2013" "28/12/2013" "28/12/2013" "28/12/2013" ...
$ hour       : chr  "13:03:01" "13:08:01" "13:13:01" "13:18:01" ...
$ temperature: num  41.6 46.1 48.5 49.5 49.5 ...

> data
      date     hour    temperature      avg
1: 27/12/2013 13:00:00       42.99 35.78455
2: 27/12/2013 14:00:00       65.97 35.78455
3: 27/12/2013 15:00:00       63.57 35.78455 

  data[,list(avg=mean(temperature)),by=hour] #dataset is sorted by hour
    hour   avg
1: 13:00:00 42.99
2: 14:00:00 65.97
3: 15:00:00 63.57
  data[,list(avg=mean(temperature)),by="date,hour"] #data set is grouped by date,then hour
        date     hour   avg
1: 27/12/2013 13:00:00 42.99
2: 27/12/2013 14:00:00 65.97
3: 27/12/2013 15:00:00 63.57

data[,list(avg=mean(temperature)),by=list(date,hour(as.POSIXct(data$hour, format = "%H:%M:%S")))] # to group by hour only 
     date     hour    avg
1: 27/12/2013    1 29.530
2: 27/12/2013    4 65.970

Upvotes: 3

Related Questions