Sait
Sait

Reputation: 19815

Radar chart with multiple scales on multiple axes

I want to plot a radar chart with multiple scales on multiple axes using matplotlib. The official API example gives only one scale on one axis. (Scales are 0.2,0.4,0.6,0.8 in this example)

I want different scales on all axes. (There are 9 axes in the given example.)

I found an example of what I am looking for here. There are 5 axes on this example and 5 scales on all axes just like I want.

Upvotes: 17

Views: 27861

Answers (3)

Yesh
Yesh

Reputation: 1194

This accepts a dataframe of ints/floats and one id-column and dynamically generates the radar chart. Works irrespective of the range of each column because all values are internally scaled to be between [0,1] (techincally 0 and 1/1.25 since I wanted to give some padding), and simply prints a text of the actual value at the right location.

import pandas as pd
import numpy as np
from matplotlib import pyplot as plt

def spider(df, *, id_column, title=None, max_values=None, padding=1.25):
    categories = df._get_numeric_data().columns.tolist()
    data = df[categories].to_dict(orient='list')
    ids = df[id_column].tolist()
    if max_values is None:
        max_values = {key: padding*max(value) for key, value in data.items()}
        
    normalized_data = {key: np.array(value) / max_values[key] for key, value in data.items()}
    num_vars = len(data.keys())
    tiks = list(data.keys())
    tiks += tiks[:1]
    angles = np.linspace(0, 2 * np.pi, num_vars, endpoint=False).tolist() + [0]
    fig, ax = plt.subplots(figsize=(8, 8), subplot_kw=dict(polar=True))
    for i, model_name in enumerate(ids):
        values = [normalized_data[key][i] for key in data.keys()]
        actual_values = [data[key][i] for key in data.keys()]
        values += values[:1]  # Close the plot for a better look
        ax.plot(angles, values, label=model_name)
        ax.fill(angles, values, alpha=0.15)
        for _x, _y, t in zip(angles, values, actual_values):
            t = f'{t:.2f}' if isinstance(t, float) else str(t)
            ax.text(_x, _y, t, size='xx-small')
            
    ax.fill(angles, np.ones(num_vars + 1), alpha=0.05)
    ax.set_yticklabels([])
    ax.set_xticks(angles)
    ax.set_xticklabels(tiks)
    ax.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
    if title is not None: plt.suptitle(title)
    plt.show()
    
radar = spider

spider(
    pd.DataFrame({
        'x': [*'abcde'],
        'c1': [10,11,12,13,14],
        'c2': [0.1, 0.3, 0.4, 0.1, 0.9],
        'c3': [1e5, 2e5, 3.5e5, 8e4, 5e4],
        'c4': [9, 12, 5, 2, 0.2],
        'test': [1,1,1,1,5]
    }),
    id_column='x',
    title='Sample Spider',
    padding=1.1
)

enter image description here

Upvotes: 4

Mike
Mike

Reputation: 47

Answer by @Yesh is good, but needs updating - I found that replacing the line:

categories = df.dtypes[(df.dtypes == 'float') | (df.dtypes == 'int')].index.tolist()

with:

categories = df._get_numeric_data().columns.tolist()

is a workaround that addresses the failure to identify int64 dtypes (etc) using df.dtypes == 'int'.

Upvotes: 1

HYRY
HYRY

Reputation: 97331

I think you can plot this with multiple axes, the lines are in the first axe, and other axes only shows ticklabels.

import numpy as np
import pylab as pl

class Radar(object):

    def __init__(self, fig, titles, labels, rect=None):
        if rect is None:
            rect = [0.05, 0.05, 0.95, 0.95]

        self.n = len(titles)
        self.angles = np.arange(90, 90+360, 360.0/self.n)
        self.axes = [fig.add_axes(rect, projection="polar", label="axes%d" % i) 
                         for i in range(self.n)]

        self.ax = self.axes[0]
        self.ax.set_thetagrids(self.angles, labels=titles, fontsize=14)

        for ax in self.axes[1:]:
            ax.patch.set_visible(False)
            ax.grid("off")
            ax.xaxis.set_visible(False)

        for ax, angle, label in zip(self.axes, self.angles, labels):
            ax.set_rgrids(range(1, 6), angle=angle, labels=label)
            ax.spines["polar"].set_visible(False)
            ax.set_ylim(0, 5)

    def plot(self, values, *args, **kw):
        angle = np.deg2rad(np.r_[self.angles, self.angles[0]])
        values = np.r_[values, values[0]]
        self.ax.plot(angle, values, *args, **kw)



fig = pl.figure(figsize=(6, 6))

titles = list("ABCDE")

labels = [
    list("abcde"), list("12345"), list("uvwxy"), 
    ["one", "two", "three", "four", "five"],
    list("jklmn")
]

radar = Radar(fig, titles, labels)
radar.plot([1, 3, 2, 5, 4],  "-", lw=2, color="b", alpha=0.4, label="first")
radar.plot([2.3, 2, 3, 3, 2],"-", lw=2, color="r", alpha=0.4, label="second")
radar.plot([3, 4, 3, 4, 2], "-", lw=2, color="g", alpha=0.4, label="third")
radar.ax.legend()

enter image description here

Upvotes: 21

Related Questions