Reputation: 392
I would like to use the 'pandas.concat' method to merge two DataFrames, but I don't fully understand all 'pandas.concat' arguments. I've got two DataFrames, which have the same identifying variables in the columns, but differ in one single column.
import pandas as pd
dict_data = {'Treatment': ['C', 'C', 'C'], 'Biorep': ['A', 'A', 'A'], 'Techrep': [1, 1, 1], 'AAseq': ['ELVISLIVES', 'ELVISLIVES', 'ELVISLIVES'], 'mz':[500.0, 500.5, 501.0]}
df_a = pd.DataFrame(dict_data)
dict_data = {'Treatment': ['C', 'C', 'C'], 'Biorep': ['A', 'A', 'A'], 'Techrep': [1, 1, 1], 'AAseq': ['ELVISLIVES', 'ELVISLIVES', 'ELVISLIVES'], 'inte':[1100.0, 1050.0, 1010.0]}
df_b = pd.DataFrame(dict_data)
df_a
AAseq Biorep Techrep Treatment mz
0 ELVISLIVES A 1 C 500.0
1 ELVISLIVES A 1 C 500.5
2 ELVISLIVES A 1 C 501.0
df_b
AAseq Biorep Techrep Treatment int
0 ELVISLIVES A 1 C 1100
1 ELVISLIVES A 1 C 1050
2 ELVISLIVES A 1 C 1010
I can add the column the following way:
df_m = df_a.copy()
df_m['inte'] = df_b['inte']
AAseq Biorep Techrep Treatment inte
0 ELVISLIVES A 1 C 1100
1 ELVISLIVES A 1 C 1050
2 ELVISLIVES A 1 C 1010
My real data looks much more complex and I'm afraid that the method above could lead to the wrong order of values in the rows (specially since I want to use 'pandas.melt' beforehand).
When using:
dfm = pd.concat([df_a, df_b])
AAseq Biorep Techrep Treatment inte mz
0 ELVISLIVES A 1 C NaN 500.0
1 ELVISLIVES A 1 C NaN 500.5
2 ELVISLIVES A 1 C NaN 501.0
0 ELVISLIVES A 1 C 1100 NaN
1 ELVISLIVES A 1 C 1050 NaN
2 ELVISLIVES A 1 C 1010 NaN
The concatenated DataFrame extends the values rowwise leading to NaN vals.
Question: How can I achieve the same result (shown above) using 'concat'?
Thank you for your support!
Upvotes: 1
Views: 12918
Reputation: 142651
Using
print pd.concat((df_a, df_b['inte']), axis=1)
you can get
AAseq Biorep Techrep Treatment mz inte
0 ELVISLIVES A 1 C 500.0 1100
1 ELVISLIVES A 1 C 500.5 1050
2 ELVISLIVES A 1 C 501.0 1010
Is this what you expected ?
Or maybe you have more complicated data like this - see different values in column Treatment
AAseq Biorep Techrep Treatment mz
0 ELVISLIVES A 1 A 500.0
1 ELVISLIVES A 1 B 500.5
2 ELVISLIVES A 1 C 501.0
AAseq Biorep Techrep Treatment inte
0 ELVISLIVES A 1 C 1100
1 ELVISLIVES A 1 B 1050
2 ELVISLIVES A 1 A 1010
and you need to keep order using values from columns AAseq Biorep Techrep Treatment
then use merge
import pandas as pd
dict_data = {
'AAseq': ['ELVISLIVES', 'ELVISLIVES', 'ELVISLIVES'],
'Biorep': ['A', 'A', 'A'],
'Techrep': [1, 1, 1],
'Treatment': ['A', 'B', 'C'],
'mz':[500.0, 500.5, 501.0]
}
df_a = pd.DataFrame(dict_data)
dict_data = {
'AAseq': ['ELVISLIVES', 'ELVISLIVES', 'ELVISLIVES'],
'Biorep': ['A', 'A', 'A'],
'Techrep': [1, 1, 1],
'Treatment': ['C', 'B', 'A'],
'inte':[1100.0, 1050.0, 1010.0]
}
df_b = pd.DataFrame(dict_data)
print pd.merge(left=df_a, right=df_b, on=['AAseq', 'Biorep', 'Techrep', 'Treatment'])
result:
AAseq Biorep Techrep Treatment mz inte
0 ELVISLIVES A 1 A 500.0 1010
1 ELVISLIVES A 1 B 500.5 1050
2 ELVISLIVES A 1 C 501.0 1100
Upvotes: 2