Reputation: 2095
Is Hadoop a proper solution for jobs that are CPU intensive and need to process a small file of around 500 MB? I have read that Hadoop is aimed to process the so called Big Data, and I wonder how it performs with a small amount of data (but a CPU intensive workload).
I would mainly like to know if a better approach for this scenario exists or instead I should stick to Hadoop.
Upvotes: 3
Views: 1249
Reputation: 164
You have exactly the type of computing issue that we do for Data Normalization. This is a need for parallel processing on cheap hardware and software with ease of use instead of going through all the special programming for traditional parallel processing. Hadoop was born of hugely distributed data replication with relatively simple computations. Indeed, the test application still being distributed, WordCount, is numbingly simplistic. This is because the genesis of Hadoop was do handle the tremendous amount of data and concurrent processing for search, with the "Big Data" analytics movement added on afterwards to try to find a more general purpose business use case. Thus, Hadoop as described in its common form is not targeted to the use case you and we have. But, Hadoop does offer the key capabilities of cheap, easy, fast parallel processing of "Small Data" with custom and complicated programming logic.
In fact, we have tuned Hadoop to do just this. We have a special built hardware environment, PSIKLOPS, that is powerful for small cluster (1-10) nodes with enough power at low cost for run 4-20 parallel jobs. We will be showcasing this in a series of web casts by Inside Analysis titled Tech Lab in conjunction with Cloudera for the first series, coming in early Aug 2014. We see this capability as being a key enabler for people like you. PSIKLOPS is not required to use Hadoop in the manner we will showcase, but it is being configured to maximize ease of use to launch multiple concurrent containers of custom Java.
Upvotes: 0
Reputation: 31543
Well a lot of companies are moving to Spark, and I personally believe it's the future of parallel processing.
It sounds like what you want to do is use many CPUs possibly on many nodes. For this you should use a Scalable Language especially designed for this problem - in other words Scala. Using Scala with Spark is much much easier and much much faster than hadoop.
If you don't have access to a cluster, it can be an idea to use Spark anyway so that you can use it in future more easily. Or just use .par
in Scala and that will paralellalize your code and use all the CPUs on your local machine.
Finally Hadoop is indeed intended for Big Data, whereas Spark is really just a very general MPP framework.
Upvotes: 1
Reputation: 4106
Hadoop is a distributed computing framework proposing a MapReduce engine. If you can express your parallelizable cpu intensive application with this paradigm (or any other supported by Hadoop modules), you may take advantage of Hadoop. A classical example of Hadoop computations is the calculation of Pi, which doesn't need any input data. As you'll see here, yahoo managed to determine the two quadrillonth digit of pi thanks to Hadoop.
However, Hadoop is indeed specialized for Big Data in the sense that it was developped for this aim. For instance, you dispose of a file system designed to contain huge files. These huge files are chunked into a lot of blocks accross a large number of nodes. In order to ensure your data integrity, each block has to be replicated to other nodes.
To conclude, I'd say that if you already dispose of an Hadoop cluster, you may want to take advantage of it. If that's not the case, and while I can't recommand anything since I have no idea what exactly is your need, I think you can find more light weights frameworks than Hadoop.
Upvotes: 1