FooBar
FooBar

Reputation: 16478

Expand rows by date range using start and end date

Consider a data frame of the form

       idnum      start        end
1993.1    17 1993-01-01 1993-12-31
1993.2    17 1993-01-01 1993-12-31
1993.3    17 1993-01-01 1993-12-31

with start and end being of type Date

 $ idnum : int  17 17 17 17 27 27
 $ start : Date, format: "1993-01-01" "1993-01-01" "1993-01-01" "1993-01-01" ...
 $ end   : Date, format: "1993-12-31" "1993-12-31" "1993-12-31" "1993-12-31" ...

I would like to create a new dataframe, that has instead monthly observations for every row, for every month in between start and end (including the boundaries):

Desired Output

idnum       month
   17  1993-01-01
   17  1993-02-01
   17  1993-03-01
...
   17  1993-11-01
   17  1993-12-01

I'm not sure what format month should have, I will at some point want to group by idnum, month for regressions on the rest of the data set.

So far, for every single row, seq(from=test[1,'start'], to=test[1, 'end'], by='1 month') gives me the right sequence - but as soon as I try to apply that to the whole data frame, it will not work:

> foo <- apply(test, 1, function(x) seq(x['start'], to=x['end'], by='1 month'))
Error in to - from : non-numeric argument to binary operator

Upvotes: 51

Views: 29291

Answers (7)

tmfmnk
tmfmnk

Reputation: 39858

One option creating a sequence per every row using dplyr and tidyr could be:

df %>%
 rowwise() %>%
 transmute(idnum,
           date = list(seq(start, end, by = "month"))) %>%
 unnest(date)

  idnum date      
   <int> <date>    
 1    17 1993-01-01
 2    17 1993-02-01
 3    17 1993-03-01
 4    17 1993-04-01
 5    17 1993-05-01
 6    17 1993-06-01
 7    17 1993-07-01
 8    17 1993-08-01
 9    17 1993-09-01
10    17 1993-10-01
# … with 26 more rows

Or creating the sequence using a grouping ID:

df %>%
 group_by(idnum) %>%
 transmute(date = list(seq(min(start), max(end), by = "month"))) %>%
 unnest(date)

Or when the goal is to create only one unique sequence per ID:

df %>%
 group_by(idnum) %>%
 summarise(start = min(start),
           end = max(end)) %>%
 transmute(date = list(seq(min(start), max(end), by = "month"))) %>%
 unnest(date)

   date      
   <date>    
 1 1993-01-01
 2 1993-02-01
 3 1993-03-01
 4 1993-04-01
 5 1993-05-01
 6 1993-06-01
 7 1993-07-01
 8 1993-08-01
 9 1993-09-01
10 1993-10-01
11 1993-11-01
12 1993-12-01

Or using reframe() since dplyr 1.1.0:

df %>%
 rowwise() %>%
 reframe(idnum,
           date = seq(start, end, by = "month"))

Upvotes: 10

NicChr
NicChr

Reputation: 1253

A vectorised solution which utilises lubridate for the month calculations.

time_seq_v() is a vectorised version of seq() specifically for date and datetime calculations.

library(lubridate)
library(data.table)
# remotes::install_github("NicChr/timeplyr")
library(timeplyr)
df <- data.frame(idnum = c(1993.1, 1993.2, 1993.3),
                 start = ymd(rep(19930101, 3)),
                 end = ymd(rep(19931231, 3)))
setDT(df)
df[, list(month = time_seq_v(start, end, by = "month"))]
#>          month
#>  1: 1993-01-01
#>  2: 1993-02-01
#>  3: 1993-03-01
#>  4: 1993-04-01
#>  5: 1993-05-01
#>  6: 1993-06-01
#>  7: 1993-07-01
#>  8: 1993-08-01
#>  9: 1993-09-01
#> 10: 1993-10-01
#> 11: 1993-11-01
#> 12: 1993-12-01
#> 13: 1993-01-01
#> 14: 1993-02-01
#> 15: 1993-03-01
#> 16: 1993-04-01
#> 17: 1993-05-01
#> 18: 1993-06-01
#> 19: 1993-07-01
#> 20: 1993-08-01
#> 21: 1993-09-01
#> 22: 1993-10-01
#> 23: 1993-11-01
#> 24: 1993-12-01
#> 25: 1993-01-01
#> 26: 1993-02-01
#> 27: 1993-03-01
#> 28: 1993-04-01
#> 29: 1993-05-01
#> 30: 1993-06-01
#> 31: 1993-07-01
#> 32: 1993-08-01
#> 33: 1993-09-01
#> 34: 1993-10-01
#> 35: 1993-11-01
#> 36: 1993-12-01
#>          month

Created on 2023-05-16 with reprex v2.0.2

Upvotes: 0

stefan
stefan

Reputation: 123818

And yet another tidyverse approach would be to use tidyr::expand:

library(dplyr, warn = FALSE)
library(tidyr)

df |> 
  mutate(
    row = row_number()
  ) |> 
  group_by(row) |> 
  expand(idnum, date = seq(start, end, "month")) |> 
  ungroup() |> 
  select(-row)
#> # A tibble: 36 × 2
#>    idnum date      
#>    <int> <date>    
#>  1    17 1993-01-01
#>  2    17 1993-02-01
#>  3    17 1993-03-01
#>  4    17 1993-04-01
#>  5    17 1993-05-01
#>  6    17 1993-06-01
#>  7    17 1993-07-01
#>  8    17 1993-08-01
#>  9    17 1993-09-01
#> 10    17 1993-10-01
#> # … with 26 more rows

Upvotes: 6

akrun
akrun

Reputation: 886938

Updated2

With new versions of purrr (0.3.0) and dplyr (0.8.0), this can be done with map2

library(dplyr)
library(purrr)
 test %>%
     # sequence of monthly dates for each corresponding start, end elements
     transmute(idnum, month = map2(start, end, seq, by = "1 month")) %>%
     # unnest the list column
     unnest %>% 
     # remove any duplicate rows
     distinct

Updated

Based on @Ananda Mahto's comments

 res1 <- melt(setNames(lapply(1:nrow(test), function(x) seq(test[x, "start"],
 test[x, "end"], by = "1 month")), test$idnum))

Also,

  res2 <- setNames(do.call(`rbind`,
          with(test, 
          Map(`expand.grid`,idnum,
          Map(`seq`, start, end, by='1 month')))), c("idnum", "month"))


  head(res1)
 #  idnum      month
 #1    17 1993-01-01
 #2    17 1993-02-01
 #3    17 1993-03-01
 #4    17 1993-04-01
 #5    17 1993-05-01
 #6    17 1993-06-01

Upvotes: 12

Arun
Arun

Reputation: 118779

Using data.table:

require(data.table) ## 1.9.2+
setDT(df)[ , list(idnum = idnum, month = seq(start, end, by = "month")), by = 1:nrow(df)]

# you may use dot notation as a shorthand alias of list in j:
setDT(df)[ , .(idnum = idnum, month = seq(start, end, by = "month")), by = 1:nrow(df)]

setDT converts df to a data.table. Then for each row, by = 1:nrow(df), we create idnum and month as required.

Upvotes: 48

CPak
CPak

Reputation: 13581

tidyverse answer

Data

df <- structure(list(idnum = c(17L, 17L, 17L), start = structure(c(8401, 
8401, 8401), class = "Date"), end = structure(c(8765, 8765, 8765
), class = "Date")), class = "data.frame", .Names = c("idnum", 
"start", "end"), row.names = c(NA, -3L))

Answer and output

library(tidyverse)
df %>%
  nest(start, end) %>%
  mutate(data = map(data, ~seq(unique(.x$start), unique(.x$end), 1))) %>%
  unnest(data)

# # A tibble: 365 x 2
   # idnum       data
   # <int>     <date>
 # 1    17 1993-01-01
 # 2    17 1993-01-02
 # 3    17 1993-01-03
 # 4    17 1993-01-04
 # 5    17 1993-01-05
 # 6    17 1993-01-06
 # 7    17 1993-01-07
 # 8    17 1993-01-08
 # 9    17 1993-01-09
# 10    17 1993-01-10
# # ... with 355 more rows

Upvotes: 4

juba
juba

Reputation: 49033

Using dplyr :

test %>%
    group_by(idnum) %>%
    summarize(start=min(start),end=max(end)) %>%
    do(data.frame(idnum=.$idnum, month=seq(.$start,.$end,by="1 month")))

Note that here I don't generate a sequence between start and end for each row, instead it is a sequence between min(start) and max(end) for each idnum. If you want the former :

test %>%
    rowwise() %>%
    do(data.frame(idnum=.$idnum, month=seq(.$start,.$end,by="1 month")))

Upvotes: 27

Related Questions