Reputation: 18181
I saw the following interview question on some online forum. What is a good solution for this?
Get the last 1000 digits of 5^1234566789893943
Upvotes: 13
Views: 859
Reputation: 11294
The technique we need to know is exponentiation by squaring and modulus. We also need to use BigInteger
in Java.
Simple code in Java:
BigInteger m = //BigInteger of 10^1000
BigInteger pow(BigInteger a, long b) {
if (b == 0) {
return BigInteger.ONE;
}
BigInteger val = pow(a, b/2);
if (b % 2 == 0)
return (val.multiply(val)).mod(m);
else
return (val.multiply(val).multiply(a)).mod(m);
}
In Java, the function modPow has done it all for you (thank Java).
Upvotes: 2
Reputation: 21
Use congruence and apply modular arithmetic. Square and multiply algorithm. If you divide any number in base 10 by 10 then the remainder represents the last digit. i.e. 23422222=2342222*10+2
So we know:
5=5(mod 10)
5^2=25=5(mod 10)
5^4=(5^2)*(5^2)=5*5=5(mod 10)
5^8=(5^4)*(5^4)=5*5=5(mod 10)
... and keep going until you get to that exponent
OR, you can realize that as we keep going you keep getting 5 as your remainder.
Upvotes: 1
Reputation: 18181
I posted a solution based on some hints here.
#include <vector>
#include <iostream>
using namespace std;
vector<char> multiplyArrays(const vector<char> &data1, const vector<char> &data2, int k) {
int sz1 = data1.size();
int sz2 = data2.size();
vector<char> result(sz1+sz2,0);
for(int i=sz1-1; i>=0; --i) {
char carry = 0;
for(int j=sz2-1; j>=0; --j) {
char value = data1[i] * data2[j]+result[i+j+1]+carry;
carry = value/10;
result[i+j+1] = value % 10;
}
result[i]=carry;
}
if(sz1+sz2>k){
vector<char> lastKElements(result.begin()+(sz1+sz2-k), result.end());
return lastKElements;
}
else
return result;
}
vector<char> calculate(unsigned long m, unsigned long n, int k) {
if(n == 0) {
return vector<char>(1, 1);
} else if(n % 2) { // odd number
vector<char> tmp(1, m);
vector<char> result1 = calculate(m, n-1, k);
return multiplyArrays(result1, tmp, k);
} else {
vector<char> result1 = calculate(m, n/2, k);
return multiplyArrays(result1, result1, k);
}
}
int main(int argc, char const *argv[]){
vector<char> v=calculate(5,8,1000);
for(auto c : v){
cout<<static_cast<unsigned>(c);
}
}
Upvotes: 0
Reputation: 389
I don't know if Windows can show a big number (Or if my computer is fast enough to show it) But I guess you COULD use this code like and algorithm:
ulong x = 5; //There are a lot of libraries for other languages like C/C++ that support super big numbers. In this case I'm using C#'s default `Uint64` number.
for(ulong i=1; i<1234566789893943; i++)
{
x = x * x; //I will make the multiplication raise power over here
}
string term = x.ToString(); //Store the number to a string. I remember strings can store up to 1 billion characters.
char[] number = term.ToCharArray(); //Array of all the digits
int tmp=0;
while(number[tmp]!='.') //This will search for the period.
tmp++;
tmp++; //After finding the period, I will start storing 1000 digits from this index of the char array
string thousandDigits = ""; //Here I will store the digits.
for (int i = tmp; i <= 1000+tmp; i++)
{
thousandDigits += number[i]; //Storing digits
}
Using this as a reference, I guess if you want to try getting the LAST 1000 characters of this array, change to this in the for of the above code:
string thousandDigits = "";
for (int i = 0; i > 1000; i++)
{
thousandDigits += number[number.Length-i]; //Reverse array... ¿?
}
As I don't work with super super looooong numbers, I don't know if my computer can get those, I tried the code and it works but when I try to show the result in console it just leave the pointer flickering xD Guess it's still working. Don't have a pro Processor. Try it if you want :P
Upvotes: -2
Reputation: 70989
A typical solution for this problem would be to use modular arithmetic and exponentiation by squaring to compute the remainder of 5^1234566789893943
when divided by 10^1000
. However in your case this will still not be good enough as it would take about 1000*log(1234566789893943) operations and this is not too much, but I will propose a more general approach that would work for greater values of the exponent.
You will have to use a bit more complicated number theory. You can use Euler's theorem to get the remainder of 5^1234566789893943
modulo 2^1000
a lot more efficiently. Denote that r
. It is also obvious that 5^1234566789893943
is divisible by 5^1000
.
After that you need to find a number d such that 5^1000*d = r(modulo 2^1000)
. To solve this equation you should compute 5^1000(modulo 2^1000)
. After that all that is left is to do division modulo 2^1000. Using again Euler's theorem this can be done efficiently. Use that x^(phi(2^1000)-1)*x =1(modulo 2^1000)
. This approach is way faster and is the only feasible solution.
Upvotes: 6
Reputation: 2528
Convert the number to a string.
Loop on the string, starting at the last index up to 1000.
Then reverse the result string.
Upvotes: 0
Reputation: 6246
Simple algorithm:
1. Maintain a 1000-digits array which will have the answer at the end
2. Implement a multiplication routine like you do in school. It is O(d^2).
3. Use modular exponentiation by squaring.
Iterative exponentiation:
array ans;
int a = 5;
while (p > 0) {
if (p&1) {
ans = multiply(ans, a)
}
p = p>>1;
ans = multiply(ans, ans);
}
multiply: multiplies two large number using the school method and return last 1000 digits.
Time complexity: O(d^2*logp) where d is number of last digits needed and p is power.
Upvotes: 12
Reputation: 4772
The key phrase is "modular exponentiation". Python has that built in:
Python 3.4.1 (v3.4.1:c0e311e010fc, May 18 2014, 10:38:22) [MSC v.1600 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> help(pow)
Help on built-in function pow in module builtins:
pow(...)
pow(x, y[, z]) -> number
With two arguments, equivalent to x**y. With three arguments,
equivalent to (x**y) % z, but may be more efficient (e.g. for ints).
>>> digits = pow(5, 1234566789893943, 10**1000)
>>> len(str(digits))
1000
>>> digits
4750414775792952522204114184342722049638880929773624902773914715850189808476532716372371599198399541490535712666678457047950561228398126854813955228082149950029586996237166535637925022587538404245894713557782868186911348163750456080173694616157985752707395420982029720018418176528050046735160132510039430638924070731480858515227638960577060664844432475135181968277088315958312427313480771984874517274455070808286089278055166204573155093723933924226458522505574738359787477768274598805619392248788499020057331479403377350096157635924457653815121544961705226996087472416473967901157340721436252325091988301798899201640961322478421979046764449146045325215261829432737214561242087559734390139448919027470137649372264607375942527202021229200886927993079738795532281264345533044058574930108964976191133834748071751521214092905298139886778347051165211279789776682686753139533912795298973229094197221087871530034608077419911440782714084922725088980350599242632517985214513078773279630695469677448272705078125
>>>
Upvotes: 2