Reputation: 53
I've seen many examples of a density plot but the density plot's y-axis is the probability. What I am looking for a is a line plot (like a density plot) but the y-axis should contain counts (like a histogram).
I can do this in excel where I manually make the bins and the frequencies and make a bar histogram and then I can change the chart type to a line - but can't find anything similar in R.
I've checked out both base and ggplot2; yet can't seem to find an answer. I understand that histograms are meant to be bars but I think representing them as a continuous line makes more visual sense.
Upvotes: 5
Views: 23829
Reputation: 725
There is a very simple and fast way for count data.
First let's generate some dummy count data:
my.count.data = rpois(n = 10000, lambda = 3)
And then the plotting command (assuming you have called library(magrittr)):
my.count.data %>% table %>% plot
Upvotes: 0
Reputation: 51
This is an old question, but I thought it might be helpful to post a solution that specifically addresses your question.
In ggplot2, you can plot a histogram and display the count with bars using:
ggplot(data) +
geom_histogram()
You can also plot a histogram and display the count with lines using a frequency polygon:
ggplot(data) +
geom_freqpoly()
For more info -- ggplot2 reference
Upvotes: 4
Reputation: 171
Although this is old, I thought the following might be useful. Let's say you have a data set of 10,000 points, and you believe they belong to a certain distribution, and you would like to plot the histogram of the actual data and the line of the probability density of the ideal distribution on top of it.
noise <- 2
#
# the noise is tagged onto the end using runif
# just do demo issues w/real data and fitting
# the subtraction causes the data to have some
# negative values, which must be addressed in
# the fit later on
#
noisylognorm <- rlnorm(10000,
mean = 0.25,
sd = 1) +
(noise * runif(10000) - noise / 10)
#
# using package fitdistrplus
#
# subset is used to remove the negative values
# as the lognormal distribution needs positive only
#
fitlnorm <- fitdist(subset(noisylognorm,
noisylognorm > 0),
"lnorm")
fitlnorm_density <- density(rlnorm(10000,
mean = fitlnorm$estimate[1],
sd = fitlnorm$estimate[2]))
hist(subset(noisylognorm,
noisylognorm < 25),
breaks = seq(-1, 25, 0.5),
col = "lightblue",
xlim = c(0, 25),
xlab = "value",
ylab = "frequency",
main = paste0("Log Normal Distribution\n",
"noise = ", noise))
lines(fitlnorm_density$x,
10000 * fitlnorm_density$y * 0.5,
type="l",
col = "red")
Note the * 0.5 in the lines function. As far as I can tell, this is necessary to account for the width of the hist() bars.
Upvotes: 0
Reputation: 2589
Using default R graphics (i.e. without installing ggplot) you can do the following, which might also make what the density function does a bit clearer:
# Generate some data
data=rnorm(1000)
# Get the density estimate
dens=density(data)
# Plot y-values scaled by number of observations against x values
plot(dens$x,length(data)*dens$y,type="l",xlab="Value",ylab="Count estimate")
Upvotes: 8
Reputation: 121077
To adapt the example on the ?stat_density
help page:
m <- ggplot(movies, aes(x = rating))
# Standard density plot.
m + geom_density()
# Density plot with y-axis scaled to counts.
m + geom_density(aes(y = ..count..))
Upvotes: 0