Reputation: 99331
With the data dat
below, I'm trying to achieve the following result, only without nesting
lapply(, sapply...)
, like the following does.
> lapply(dat, function(x) sapply(funs, function(y) y(x)))
# $bondsba01
# AVG SLG
# 0.223 0.300
#
# $pujolal01
# AVG SLG
# 0.329 0.422
I'm familiar with rapply()
, but I'm having trouble implementing it over this list. I figured since dat
is a list of data frames, this call amounts to a list of lists, and rapply
is appropriate.
I've tried a few variations of rapply()
, and get the same error almost every time.
> rapply(funs, function(x) x(dat), how = "replace")
# Error in eval(expr, envir, enclos) : object 'H' not found
I get the same error when how = "list"
and how = "unlist"
How can I do this without nesting sapply
with lapply
?
Sample Data:
dat <-
structure(list(bondsba01 = structure(list(AB = 413L, R = 72L,
H = 92L, X2B = 26L, X3B = 3L, HR = 16L, RBI = 48L, SB = 36L,
CS = 7L, BB = 65L, SO = 102L, IBB = 2L, HBP = 2L, SH = 2L,
SF = 2L), .Names = c("AB", "R", "H", "X2B", "X3B", "HR",
"RBI", "SB", "CS", "BB", "SO", "IBB", "HBP", "SH", "SF"), row.names = 1L,
class = "data.frame"),
pujolal01 = structure(list(AB = 590L, R = 112L, H = 194L,
X2B = 47L, X3B = 4L, HR = 37L, RBI = 130L, SB = 1L, CS = 3L,
BB = 69L, SO = 93L, IBB = 6L, HBP = 9L, SH = 1L, SF = 7L),
.Names = c("AB", "R", "H", "X2B", "X3B", "HR", "RBI", "SB", "CS", "BB",
"SO", "IBB", "HBP", "SH", "SF"), row.names = 1L, class = "data.frame")),
.Names = c("bondsba01", "pujolal01"))
Function List:
funs <-
structure(list(AVG = function (x)
with(x, round(H/AB, 3)), SLG = function (x)
with(x, round(((H - X2B - X3B - HR) + 2 * X2B + 3 * X3B + HR)/AB,
3))), .Names = c("AVG", "SLG"))
Upvotes: 0
Views: 137
Reputation: 179408
Just because it's Saturday morning, and I'm in the mood to experiment with foreach
, here is a solution:
library(foreach)
library(iterators)
foreach(x=iter(dat), .combine=cbind) %:%
foreach(f=iter(funs), .combine=c) %do%
f(x)
result.1 result.2
[1,] 0.223 0.329
[2,] 0.300 0.422
This should be fast, but more importantly, it is pretty easy to parallelise foreach. You only have to make two changes:
doParallel
) and register the cluster%do%
to %dopar%
Like this:
library(doParallel)
cl <- makePSOCKcluster(2)
registerDoParallel(cl)
foreach(x=iter(dat), .combine=cbind) %:%
foreach(f=iter(funs), .combine=c) %dopar%
f(x)
result.1 result.2
[1,] 0.223 0.329
[2,] 0.300 0.422
stopCluster(cl)
Upvotes: 3