toddlermenot
toddlermenot

Reputation: 1618

Oracle 10g Full table scan(parallel access) 100x times faster than index access by rowid

There was a query in production which was running for several hours(5-6) hours. I looked into its execution plan, and found that it was ignoring a parallel hint on a huge table. Reason - it was using TABLE ACCESS BY INDEX ROWID. So after I added a /*+ full(huge_table) */ hint before the parallel(huge_table) hint, the query started running in parallel, and it finished in less than 3 minutes. What I could not fathom was the reason for this HUGE difference in performance. The following are the advantages of parallel FTS I can think of:

  1. Parallel operations are inherently fast if you have more idle CPUs.
  2. Parallel operations in 10g are direct I/O which bypass buffer cache which means there is no risk of "buffer busy waits" or any other contention for buffer cache.

Sure there are the above advantages but then again the following disadvantages are still there:

  1. Parallel operations still have to do I/O, and this I/O would be more than what we have for TABLE ACCESS BY INDEX ROWID as the entire table is scanned and is costlier(all physical reads)
  2. Parallel operations are not very scalable which means if there aren't enough free resources, it is going to be slow

With the above knowledge at hand, I see only one reason that could have caused the poor performance for the query when it used ACCESS BY INDEX ROWID - some sort of contention like "busy buffer waits". But it doesn't show up on the AWR top 5 wait events. The top two events were "db file sequential read" and "db file scattered read". Is there something else that I have missed to take into consideration? Please enlighten me.

Upvotes: 3

Views: 1888

Answers (1)

Justin Cave
Justin Cave

Reputation: 231661

First, without knowing anything about your data volumes, statistics, the selectivity of your predicates, etc. I would guess that the major benefit you're seeing is from doing a table scan rather than trying to use an index. Indexes are not necessarily fast and table scans are not necessarily slow. If you are using a rowid from an index to access a row, Oracle is limited to doing single block reads (sequential reads in Oracle terms) and that it's going to have to read the same block many times if the block has many rows of interest. A full table scan, on the other hand, can do nice, efficient multiblock reads (scattered reads in Oracle terms). Sure, an individual single block read is going to be more efficient than a single multiblock read but the multiblock read is much more efficient per byte read. Additionally, if you're using an index, you've potentially got to read a number of blocks from the index periodically to find out the next rowid to read from the table.

You don't actually need to read all that much data from the table before a table scan is more efficient than an index. Depending on a host of other factors, the tipping point is probably in the 10-20% range (that's a very, very rough guess). Imagine that you had to get a bunch of names from the phone book and that the phone book had an index that included the information you're filtering on and the page that the entry is on. You could use an index to find the name of a single person you want to look at, flip to the indicated page, record the information, flip back to the index, find the next name, flip back, etc. Or you could simply start at the first name, scan until you find a name of interest, record the information, and continue the scan. It doesn't take too long before you're better off ignoring the index and just reading from the table.

Adding parallelism doesn't reduce the amount of work your query does (in fact, adding in parallel query coordination means that you're doing more work). It's just that you're doing that work over a shorter period of elapsed time by using more of the server's available resources. If you're running the query with 6 parallel slaves, that could certainly allow the query to run 5 times faster overall (parallel query obviously scales a bit less than linearly because of overheads). If that's the case, you'd expect that doing a table scan made the query 20 times faster and adding parallelism added another factor of 5 to get your 100x improvement.

Upvotes: 6

Related Questions