Reputation: 311
Given the following code:
package main
import (
"fmt"
"math/rand"
"time"
)
func main() {
for i := 0; i < 3; i++ {
go f(i)
}
// prevent main from exiting immediately
var input string
fmt.Scanln(&input)
}
func f(n int) {
for i := 0; i < 10; i++ {
dowork(n, i)
amt := time.Duration(rand.Intn(250))
time.Sleep(time.Millisecond * amt)
}
}
func dowork(goroutine, loopindex int) {
// simulate work
time.Sleep(time.Second * time.Duration(5))
fmt.Printf("gr[%d]: i=%d\n", goroutine, loopindex)
}
Can i assume that the 'dowork' function will be executed in parallel?
Is this a correct way of achieving parallelism or is it better to use channels and separate 'dowork' workers for each goroutine?
Upvotes: 19
Views: 61970
Reputation: 1455
Regarding GOMAXPROCS
, you can find this in Go 1.5's release docs:
By default, Go programs run with GOMAXPROCS set to the number of cores available; in prior releases it defaulted to 1.
Regarding preventing the main
function from exiting immediately, you could leverage WaitGroup
's Wait
function.
I wrote this utility function to help parallelize a group of functions:
import "sync"
// Parallelize parallelizes the function calls
func Parallelize(functions ...func()) {
var waitGroup sync.WaitGroup
waitGroup.Add(len(functions))
defer waitGroup.Wait()
for _, function := range functions {
go func(f func()) {
defer waitGroup.Done()
f()
}(function)
}
}
So in your case, we could do this
func1 := func() {
f(0)
}
func2 = func() {
f(1)
}
func3 = func() {
f(2)
}
Parallelize(func1, func2, func3)
If you wanted to use the Parallelize function, you can find it here https://github.com/shomali11/util
Upvotes: 33
Reputation: 1
You can add a loop at the end, to block until the jobs are done:
package main
import "time"
func f(n int, b chan bool) {
println(n)
time.Sleep(time.Second)
b <- true
}
func main() {
b := make(chan bool, 9)
for n := cap(b); n > 0; n-- {
go f(n, b)
}
for <-b {
if len(b) == 0 { break }
}
}
Upvotes: 0
Reputation: 6545
This answer is outdated. Please see this answer instead.
Your code will run concurrently, but not in parallel. You can make it run in parallel by setting GOMAXPROCS
.
It's not clear exactly what you're trying to accomplish here, but it looks like a perfectly valid way of achieving concurrency to me.
Upvotes: 23
Reputation: 11
This helped me when I was starting out.
package main
import "fmt"
func put(number chan<- int, count int) {
i := 0
for ; i <= (5 * count); i++ {
number <- i
}
number <- -1
}
func subs(number chan<- int) {
i := 10
for ; i <= 19; i++ {
number <- i
}
}
func main() {
channel1 := make(chan int)
channel2 := make(chan int)
done := 0
sum := 0
go subs(channel2)
go put(channel1, 1)
go put(channel1, 2)
go put(channel1, 3)
go put(channel1, 4)
go put(channel1, 5)
for done != 5 {
select {
case elem := <-channel1:
if elem < 0 {
done++
} else {
sum += elem
fmt.Println(sum)
}
case sub := <-channel2:
sum -= sub
fmt.Printf("atimta : %d\n", sub)
fmt.Println(sum)
}
}
close(channel1)
close(channel2)
}
"Conventional cluster-based systems (such as supercomputers) employ parallel execution between processors using MPI. MPI is a communication interface between processes that execute in operating system instances on different processors; it doesn't support other process operations such as scheduling. (At the risk of complicating things further, because MPI processes are executed by operating systems, a single processor can run multiple MPI processes and/or a single MPI process can also execute multiple threads!)"
Upvotes: 0
Reputation: 14510
f()
will be executed concurrently but many dowork()
will be executed sequentially within each f()
. Waiting on stdin is also not the right way to ensure that your routines finished execution. You must spin up a channel that each f()
pushes a true
on when the f()
finishes.
At the end of the main()
you must wait for n number of true
's on the channel. n being the number of f()
that you have spun up.
Upvotes: 0