Reputation: 934
When I run the following in ipython
import numpy as np
import pandas as pd
df = pd.DataFrame(np.round(9*np.random.rand(4,4), decimals=1))
df.index.name = 'x'
df.columns.name = 'y'
df.to_csv('output.csv')
df
it outputs the following result:
y 0 1 2 3
x
0 7.6 7.4 0.3 7.5
1 5.6 0.0 1.5 5.9
2 7.1 2.1 0.0 0.9
3 3.7 6.6 3.3 8.4
However when I open output.csv
the "y" is removed:
x 0 1 2 3
0 7.6 7.4 0.3 7.5
1 5.6 0 1.5 5.9
2 7.1 2.1 0 0.9
3 3.7 6.6 3.3 8.4
How do I make it so that the df.columns.name
is retained when I output the dataframe to csv?
Current crude work-around is me doing the following:
df.to_csv('output.csv', index_label = 'x|y')
Which results in output.csv
reading:
x|y 0 1 2 3
0 7.6 7.4 0.3 7.5
1 5.6 0 1.5 5.9
2 7.1 2.1 0 0.9
3 3.7 6.6 3.3 8.4
Something better would be great! Thanks for your help (in advance).
This is what I am working on: https://github.com/SimonBiggs/Electron-Cutout-Factors
This is an example table: https://github.com/SimonBiggs/Electron-Cutout-Factors/blob/master/output/20140807_173714/06app06eng/interpolation-table.csv
Upvotes: 6
Views: 22905
Reputation: 1
For some reason, it works fine if the column labels are a multiindex. This seems to be a pandas issue. A solution that works and isn't too ugly would be:
import numpy as np
import pandas as pd
df = pd.DataFrame(np.round(9*np.random.rand(4,4), decimals=1))
df.index.name = 'x'
df.columns.name = 'y'
##### Add this line to create another column index level
df.columns = [df.columns, df.columns]
df.to_csv('output.csv')
##### When you read it in, specify that the first two lines are both headers
df2 = pd.read_csv('output.csv', index_col=0, header=[0,1])
##### Drop the extra level
df2.columns = df2.columns.droplevel(0)
df2
Upvotes: 0
Reputation: 495
You can pass a list to name the columns, then you can specify the index name when you are writing to csv:
df.columns = ['column_name1', 'column_name2', 'column_name3']
df.to_csv('/path/to/file.csv', index_label='Index_name')
Upvotes: 10
Reputation: 249444
How about this? It's slightly different but hopefully usable, since it fits the CSV paradigm:
>>> df.columns = ['y{}'.format(name) for name in df.columns]
>>> df.to_csv('output.csv')
>>> print open('output.csv').read()
x,y0,y1,y2,y3
0,3.5,1.5,1.6,0.3
1,7.0,4.7,6.5,5.2
2,6.6,7.6,3.2,5.5
3,4.0,2.8,7.1,7.8
Upvotes: 1