Reputation: 8481
I am trying to implement a vector that can take elements of several types, and can apply a function on all of them. This is easily done with a base class, virtual functions and inheritance, but I explicity do not want to use it. Here is how far I am so far:
#include <iostream>
#include <vector>
#include <tuple>
// this will be my new polymorphic vector;
template<typename... Ts>
class myvector {
std::tuple<std::vector<Ts>...> vectors;
template <template<typename> class funtype>
void for_each() {
}
template <template<typename> class funtype, typename X, typename... Xs>
void for_each() {
std::vector<X>& vector = std::get<std::vector<X>>(vectors);
for ( X& x : vector ) {
funtype<X> fun;
fun(x);
}
for_each<funtype, Xs...>();
}
public:
template <typename T>
void push_back(const T& t) {
std::vector<T>& vector = std::get<std::vector<T>>(vectors);
vector.push_back(t);
}
template <typename T>
void pop_back() {
std::vector<T>& vector = std::get<std::vector<T>>(vectors);
vector.pop_back();
}
/* here I would like to pass a function, or function object that
* can be expanded to all underlying types. I would prefer to just
* give a function name, that has an implementation to all types in Ts
*/
template <template<typename> class funtype>
void ForEach() {
for_each<funtype,Ts...>();
}
};
struct foo {
};
struct bar {
};
template <typename T>
void method(T& t);
template<>
void method(foo& b) {
std::cout << "foo" << std::endl;
}
template<>
void method(bar& b) {
std::cout << "bar" << std::endl;
}
int main()
{
myvector<foo,bar> mv;
mv.push_back( foo{} );
mv.push_back( bar{} );
mv.ForEach<method>();
}
at the moment I am kind of stuck, I hope you can give me some advise on how to go further.
Upvotes: 2
Views: 469
Reputation: 39131
A common solution is to use a function object with a set of operator()
:
struct my_fun_type
{
void operator()(foo&) const
{ std::cout << "foo\n"; }
void operator()(bar&) const
{ std::cout << "bar\n"; }
};
This allows to pass a "set" of overloaded functions to an algorithm, state, and is rather convenient to use:
my_algorithm(my_fun_type{});
If we want to add support for such function objects, we could define ForEach
as follows:
template <typename Elem, typename Fun>
void for_each(Fun&& fun) {
std::vector<Elem>& vector = std::get<std::vector<Elem>>(vectors);
for ( Elem& e : vector ) {
fun(x);
}
}
template <typename Fun>
void ForEach(Fun&& fun) {
int dummy[] = { 0, (for_each<Ts>(fun), 0)... };
(void)dummy;
}
That dummy
is a trick to call for_each
for all types in Ts
. The (void)dummy
is intended to suppress a compiler warning (dummy
is never read from).
You can learn more about this technique in other Q&As, such as that one.
The Fun&&
is not an rvalue reference, but a universal reference.
Note that the above example differs from many Standard Library algorithms, which take the function object by value:
template <typename Elem, typename Fun>
void for_each(Fun fun) {
std::vector<Elem>& vector = std::get<std::vector<Elem>>(vectors);
std::for_each(vector.begin(), vector.end(), std::move(fun));
}
template <typename Fun>
void ForEach(Fun fun) {
int dummy[] = { 0, (for_each<Ts>(fun), 0)... };
(void)dummy;
}
To pass a set of overloaded free functions, we can wrap them in a function object (thank @Yakk for the suggestion):
struct method_t
{
template<class... Ts>
void operator()(Ts&&... ts) const
{ method( std::forward<Ts>(ts)... ); }
};
In C++1y, such a function object type can be created with less boilerplate using a polymorphic lambda:
[](auto&&... pp)
{ method( std::forward<decltype(pp)>(pp)... ); }
Upvotes: 3