Reputation: 3343
I have a piece of software that reads a file and transforms each first value it reads per line using a function (derived from numpy.polyfit
and numpy.poly1d
functions).
This function has to then write the transformed file away and I wrongly (it seems) assumed that the disk I/O part was the performance bottleneck.
The reason why I claim that it is the transformation that is slowing things down is because I tested the code (listed below) after i changed transformedValue = f(float(values[0]))
into transformedValue = 1000.00
and that took the time required down from 1 min to 10 seconds.
I was wondering if anyone knows of a more efficient way to perform repeated transformations like this?
Code snippet:
def transformFile(self, f):
""" f contains the function returned by numpy.poly1d,
inputFile is a tab seperated file containing two floats
per line.
"""
with open (self.inputFile,'r') as fr:
for line in fr:
line = line.rstrip('\n')
values = line.split()
transformedValue = f(float(values[0])) # <-------- Bottleneck
outputBatch.append(str(transformedValue)+" "+values[1]+"\n")
joinedOutput = ''.join(outputBatch)
with open(output,'w') as fw:
fw.write(joinedOutput)
The function f
is generated by another function, the function fits a 2d degree polynomial through a set of expected floats and a set of measured floats. A snippet from that function is:
# Perform 2d degree polynomial fit
z = numpy.polyfit(measuredValues,expectedValues,2)
f = numpy.poly1d(z)
-- ANSWER --
I have revised the code to vectorize the values prior to transforming them, which significantly speed-up the performance, the code is now as follows:
def transformFile(self, f):
""" f contains the function returned by numpy.poly1d,
inputFile is a tab seperated file containing two floats
per line.
"""
with open (self.inputFile,'r') as fr:
outputBatch = []
x_values = []
y_values = []
for line in fr:
line = line.rstrip('\n')
values = line.split()
x_values.append(float(values[0]))
y_values.append(int(values[1]))
# Transform python list into numpy array
xArray = numpy.array(x_values)
newArray = f(xArray)
# Prepare the outputs as a list
for index, i in enumerate(newArray):
outputBatch.append(str(i)+" "+str(y_values[index])+"\n")
# Join the output list elements
joinedOutput = ''.join(outputBatch)
with open(output,'w') as fw:
fw.write(joinedOutput)
Upvotes: 0
Views: 232
Reputation: 176850
It's difficult to suggest improvements without knowing exactly what your function f
is doing. Are you able to share it?
However, in general many NumPy operations often work best (read: "fastest") on NumPy array
objects rather than when they are repeated multiple times on individual values.
You might like to consider reading the numbers values[0]
into a Python list
, passing this to a NumPy array
and using vectorisable NumPy operations to obtain an array
of output values.
Upvotes: 2