Reputation: 4608
I would like to understand if it is possible to train an online SGDClassifier (with partial_fit) using HashingVectorizer and TfidfTransformer. Simply joining them in a Pipeline will not work as TfidfTransformer is stateful so that would break the online learning process. This post says it's not possible to use tf-idf in an online fashion but a comment on this post suggests that it may somehow be possible: "In particular if you use stateful transformers as TfidfTransformer you will need to do several passes on your data". Is that possible without loading the whole training set into memory? If so, how? If not, is there an alternative solution to combine HashingVectorizer with tf-idf on large datasets?
Upvotes: 4
Views: 836
Reputation: 363797
Is that possible without loading the whole training set into memory?
No. TfidfTransformer
needs to have the entire X
matrix in memory. You'll need to roll your own tf-idf estimator, use that to compute per-term document frequencies in one pass over the data, then do another pass to produce tf-idf features and fit a classifier to them.
Upvotes: 4