Reputation: 31
I noticed that there's a difference in Eigen C++ and Matlab when calculating with quaternions. In Eigen C++, the code
Eigen::Quaterniond q;
q.x() = 0.270598;
q.y() = 0.653281;
q.z() = -0.270598;
q.w() = 0.653281;
Eigen::Matrix3d R = q.normalized().toRotationMatrix();
std::cout << "R=" << std::endl << R << std::endl;
gives the rotation matrix:
R=
-2.22045e-16 0.707107 0.707107
0 0.707107 -0.707107
-1 0 -2.22045e-16
In Matlab (which uses wxyz), however, I get the following result:
q =
0.6533 0.2706 0.6533 -0.2706
>> quat2dcm(q)
ans =
-0.0000 0 -1.0000
0.7071 0.7072 0
0.7072 -0.7071 -0.0000
which is the transpose! Can somebody explain me what is going on? I made sure that the positions of wxyz are correct.
Thank you
Upvotes: 3
Views: 2033
Reputation: 643
With Matlab, you are calculating the direction cosine matrix. It is indeed a rotation matrix like the one you are calculating with Eigen C++, and as such is also unitary (all rows and all columns have a norm of 1 and either form a perpendicular set of vectors).
Now, it so happens that the inverse of a unitary matrix is equal to its conjugate transpose (*), i.e.:
U*U = UU* = I
In other words, what must be happening is that the convention of Matlab is the opposite of that of Eigen C++.
From Wikipedia:
The coordinates of a point P may change due to either a rotation of the coordinate system CS (alias), or a rotation of the point P (alibi).
In most cases the effect of the ambiguity is equivalent to the effect of a rotation matrix inversion (for these orthogonal matrices equivalently matrix transpose).
Upvotes: 1