Reputation: 317
I was wondering if there is a operator for element-wise multiplication of rows of a sparse matrix with a vector in scipy.sparse library. Something similar to A*b for numpy arrays? Thanks.
Upvotes: 4
Views: 2391
Reputation: 114811
Use the multiply
method:
In [15]: a
Out[15]:
<3x5 sparse matrix of type '<type 'numpy.int64'>'
with 5 stored elements in Compressed Sparse Row format>
In [16]: a.A
Out[16]:
array([[1, 0, 0, 2, 0],
[0, 0, 3, 0, 0],
[0, 0, 0, 4, 5]])
In [17]: x
Out[17]: array([ 5, 10, 15, 20, 25])
In [18]: a.multiply(x)
Out[18]:
matrix([[ 5, 0, 0, 40, 0],
[ 0, 0, 45, 0, 0],
[ 0, 0, 0, 80, 125]])
Note that the result is not a sparse matrix if x
is a regular numpy array (ndarray
). Convert x
to a sparse matrix first to get a sparse result:
In [32]: xs = csr_matrix(x)
In [33]: y = a.multiply(xs)
In [34]: y
Out[34]:
<3x5 sparse matrix of type '<type 'numpy.int64'>'
with 5 stored elements in Compressed Sparse Row format>
In [35]: y.A
Out[35]:
array([[ 5, 0, 0, 40, 0],
[ 0, 0, 45, 0, 0],
[ 0, 0, 0, 80, 125]])
Upvotes: 5