Reputation: 191
I am trying to learn the usage of shared memory to increase the performance. Here I am trying to copy data from global memory to shared memory. But when I have a single block (256 threads) it gives the right result while with more than one block it gives a random result.
#include <cuda.h>
#include <stdio.h>
__global__ void staticReverse(int *d, int n)
{
__shared__ int s[400];
int t = blockIdx.x * blockDim.x + threadIdx.x;
d[t] = d[t]*d[t];
s[t] =d[t];
__syncthreads();
d[t] = s[t];
}
__global__ void dynamicReverse(int *d, int n)
{
extern __shared__ int s[];
int t = threadIdx.x;
s[t] = d[t]*d[t];
__syncthreads();
d[t] = s[t];
}
int main(void)
{
const int n = 400;
int a[n], d[n];
for (int i = 0; i < n; i++)
{
a[i] = i;
}
int *d_d;
cudaMalloc(&d_d, n * sizeof(int));
// run version with static shared memory
int block_size = 256;
int n_blocks = n/block_size + (n%block_size == 0 ? 0:1);
cudaMemcpy(d_d, a, n*sizeof(int), cudaMemcpyHostToDevice);
staticReverse<<<n_blocks,block_size>>>(d_d, n);
cudaMemcpy(d, d_d, n*sizeof(int), cudaMemcpyDeviceToHost);
for (int i = 0; i < n; i++)
{
printf("%d\n",d[i]);
}
}
What does the third argument in the
dynamicReverse<<<n_blocks,block_size,n*sizeof(int)>>>(d_d, n);
kernel launch do? Does it allocat shared memory for the entire block or per thread?
If I require more than 64kb of shared memory per multiprocessor with compute capability 5.0, what do I need to do?
Upvotes: 1
Views: 343
Reputation: 21475
In your static shared memory allocation code you had three issues:
The dynamic shared memory allocation code had the same issues #2 and #3 as above, plus the fact that you were indexing global memory with local thread index, instead of global. You can use the third argument to specify the size of the shared memory to be allocated. In particular, you should allocate an amount of 256 int
s, i.e., related to the block size, similarly to the static shared memory allocation case.
Here is the complete working code:
/********************/
/* CUDA ERROR CHECK */
/********************/
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %d\n", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
/***********************************/
/* SHARED MEMORY STATIC ALLOCATION */
/***********************************/
#include <cuda.h>
#include <stdio.h>
__global__ void staticReverse(int *d, int n)
{
__shared__ int s[256];
int t = blockIdx.x * blockDim.x + threadIdx.x;
if (t < n) {
d[t] = d[t]*d[t];
s[threadIdx.x] =d[t];
__syncthreads();
d[t] = s[threadIdx.x];
}
}
/************************************/
/* SHARED MEMORY DYNAMIC ALLOCATION */
/************************************/
__global__ void dynamicReverse(int *d, int n)
{
extern __shared__ int s[];
int t = blockIdx.x * blockDim.x + threadIdx.x;
if (t < n) {
s[threadIdx.x] = d[t]*d[t];
__syncthreads();
d[t] = s[threadIdx.x];
}
}
int main(void)
{
const int n = 400;
int* a = (int*) malloc(n*sizeof(int));
int* d = (int*) malloc(n*sizeof(int));
for (int i = 0; i < n; i++) { a[i] = i; }
int *d_d; gpuErrchk(cudaMalloc(&d_d, n * sizeof(int)));
// run version with static shared memory
int block_size = 256;
int n_blocks = n/block_size + (n%block_size == 0 ? 0:1);
gpuErrchk(cudaMemcpy(d_d, a, n*sizeof(int), cudaMemcpyHostToDevice));
//staticReverse<<<n_blocks,block_size>>>(d_d, n);
dynamicReverse<<<n_blocks,block_size,256*sizeof(int)>>>(d_d, n);
gpuErrchk(cudaPeekAtLastError());
gpuErrchk(cudaDeviceSynchronize());
gpuErrchk(cudaMemcpy(d, d_d, n*sizeof(int), cudaMemcpyDeviceToHost));
for (int i = 0; i < n; i++) { printf("%d\n",d[i]); }
}
Upvotes: 4