Reputation: 21244
I have some data and I can fit a gamma distribution using for example this code taken from Fitting a gamma distribution with (python) Scipy .
import scipy.stats as ss
import scipy as sp
Generate some gamma data:
alpha=5
loc=100.5
beta=22
data=ss.gamma.rvs(alpha,loc=loc,scale=beta,size=10000)
print(data)
# [ 202.36035683 297.23906376 249.53831795 ..., 271.85204096 180.75026301
# 364.60240242]
Here we fit the data to the gamma distribution:
fit_alpha,fit_loc,fit_beta=ss.gamma.fit(data)
print(fit_alpha,fit_loc,fit_beta)
# (5.0833692504230008, 100.08697963283467, 21.739518937816108)
print(alpha,loc,beta)
# (5, 100.5, 22)
I can also fit an exponential distribution to the same data. I would however like to do a likelihood ratio test. To do this I don't just need to fit the distributions but I also need to return the likelihood. How can you do that in python?
Upvotes: 3
Views: 3141
Reputation: 114781
You can compute the log-likelihood of data
by calling the logpdf
method of stats.gamma
and then summing the array.
The first bit of code is from your example:
In [63]: import scipy.stats as ss
In [64]: np.random.seed(123)
In [65]: alpha = 5
In [66]: loc = 100.5
In [67]: beta = 22
In [68]: data = ss.gamma.rvs(alpha, loc=loc, scale=beta, size=10000)
In [70]: data
Out[70]:
array([ 159.73200869, 258.23458137, 178.0504184 , ..., 281.91672824,
164.77152977, 145.83445141])
In [71]: fit_alpha, fit_loc, fit_beta = ss.gamma.fit(data)
In [72]: fit_alpha, fit_loc, fit_beta
Out[72]: (4.9953385276512883, 101.24295938462399, 21.992307537192605)
Here's how to compute the log-likelihood:
In [73]: loglh = ss.gamma.logpdf(data, fit_alpha, fit_loc, fit_beta).sum()
In [74]: loglh
Out[74]: -52437.410641032831
Upvotes: 6