Reputation: 619
I came across the following programming interview problem:
Challenge 1: N-grams
An N-gram is a sequence of N consecutive characters from a given word. For the word "pilot" there are three 3-grams: "pil", "ilo" and "lot". For a given set of words and an n-gram length Your task is to
• write a function that finds the n-gram that is the most frequent one among all the words
• print the result to the standard output (stdout)
• if there are multiple n-grams having the same maximum frequency please print the one that is the smallest lexicographically (the first one according to the dictionary sorting order)
Note that your function will receive the following arguments:
• text
○ which is a string containing words separated by whitespaces
• ngramLength
○ which is an integer value giving the length of the n-gram
Data constraints
• the length of the text string will not exceed 250,000 characters
• all words are alphanumeric (they contain only English letters a-z, A-Z and numbers 0-9)
Efficiency constraints
• your function is expected to print the result in less than 2 seconds
Example Input text: “aaaab a0a baaab c”
Output aaa ngramLength: 3
Explanation
For the input presented above the 3-grams sorted by frequency are:
• "aaa" with a frequency of 3
• "aab" with a frequency of 2
• "a0a" with a frequency of 1
• "baa" with a frequency of 1
If I have only one hour to solve the problem and I chose to use the C language to solve it: is it a good idea to implement a Hash Table to count the frequency of the N-grams with that amount of time? because in the C library there is no implementation of a Hash Table...
If yes, I was thinking to implement a Hash Table using separate chaining with ordered linked lists. Those implementations reduce the time that you have to solve the problem....
Is that the fastest option possible?
Thank you!!!
Upvotes: 9
Views: 12216
Reputation: 1
One simple python solution for this question
your_str = "aaaab a0a baaab c"
str_list = your_str.split(" ")
str_hash = {}
ngram_len = 3
for str in str_list:
start = 0
end = ngram_len
len_word = len(str)
for i in range(0,len_word):
if end <= len_word :
if str_hash.get(str[start:end]):
str_hash[str[start:end]] = str_hash.get(str[start:end]) + 1
else:
str_hash[str[start:end]] = 1
start = start +1
end = end +1
else:
break
keys_sorted =sorted(str_hash.items())
for ngram in sorted(keys_sorted,key= lambda x : x[1],reverse = True):
print "\"%s\" with a frequency of %s" % (ngram[0],ngram[1])
Upvotes: 0
Reputation: 61389
You can solve this problem in O(nk) time where n is the number of words and k is the average number of n-grams per word.
You're correct in thinking that a hash table is a good solution to the problem.
However, since you have limited time to code a solution, I'd suggest using open addressing instead of a linked list. The implementation may be simpler: if you reach a collision you just walk farther along the list.
Also, be sure to allocate enough memory to your hash table: something about twice the size of the expected number of n-grams should be fine. Since the expected number of n-grams is <=250,000 a hash table of 500,000 should be more than sufficient.
In terms of coding speed, the small input length (250,000) makes sorting and counting a feasible option. The quickest way is probably to generate an array of pointers to each n-gram, sort the array using an appropriate comparator, and then walk along it keeping track of the which n-gram appeared the most.
Upvotes: 0
Reputation: 18567
If you're not bound to C, I've written this Python script in about 10 minutes which processes 1.5Mb file, containing more than 265 000 words looking for 3-grams in 0.4s (apart from printing the values on the screen)
The text used for the test is Ulysses of James Joyce, you can find it free here https://www.gutenberg.org/ebooks/4300
Words separators here are both space
and carriage return \n
import sys
text = open(sys.argv[1], 'r').read()
ngram_len = int(sys.argv[2])
text = text.replace('\n', ' ')
words = [word.lower() for word in text.split(' ')]
ngrams = {}
for word in words:
word_len = len(word)
if word_len < ngram_len:
continue
for i in range(0, (word_len - ngram_len) + 1):
ngram = word[i:i+ngram_len]
if ngram in ngrams:
ngrams[ngram] += 1
else:
ngrams[ngram] = 1
ngrams_by_freq = {}
for key, val in ngrams.items():
if val not in ngrams_by_freq:
ngrams_by_freq[val] = [key]
else:
ngrams_by_freq[val].append(key)
ngrams_by_freq = sorted(ngrams_by_freq.items())
for key in ngrams_by_freq:
print('{} with frequency of {}'.format(key[1:], key[0]))
Upvotes: 1
Reputation: 11893
Just for fun, I wrote a SQL version (SQL Server 2012):
if object_id('dbo.MaxNgram','IF') is not null
drop function dbo.MaxNgram;
go
create function dbo.MaxNgram(
@text varchar(max)
,@length int
) returns table with schemabinding as
return
with
Delimiter(c) as ( select ' '),
E1(N) as (
select 1 from (values
(1),(1),(1),(1),(1),(1),(1),(1),(1),(1)
)T(N)
),
E2(N) as (
select 1 from E1 a cross join E1 b
),
E6(N) as (
select 1 from E2 a cross join E2 b cross join E2 c
),
tally(N) as (
select top(isnull(datalength(@text),0))
ROW_NUMBER() over (order by (select NULL))
from E6
),
cteStart(N1) as (
select 1 union all
select t.N+1 from tally t cross join delimiter
where substring(@text,t.N,1) = delimiter.c
),
cteLen(N1,L1) as (
select s.N1,
isnull(nullif(charindex(delimiter.c,@text,s.N1),0) - s.N1,8000)
from cteStart s
cross join delimiter
),
cteWords as (
select ItemNumber = row_number() over (order by l.N1),
Item = substring(@text, l.N1, l.L1)
from cteLen l
),
mask(N) as (
select top(@length) row_Number() over (order by (select NULL))
from E6
),
topItem as (
select top 1
substring(Item,m.N,@length) as Ngram
,count(*) as Length
from cteWords w
cross join mask m
where m.N <= datalength(w.Item) + 1 - @length
and @length <= datalength(w.Item)
group by
substring(Item,m.N,@length)
order by 2 desc, 1
)
select d.s
from (
select top 1 NGram,Length
from topItem
) t
cross apply (values (cast(NGram as varchar)),(cast(Length as varchar))) d(s)
;
go
which when invoked with the sample input provided by OP
set nocount on;
select s as [ ] from MaxNgram(
'aaaab a0a baaab c aab'
,3
);
go
yields as desired
------------------------------
aaa
3
Upvotes: 1
Reputation: 1987
Sorry for posting python but this is what I would do: You might get some ideas for the algorithm. Notice this program solves an order of magnitude more words.
from itertools import groupby
someText = "thibbbs is a test and aaa it may haaave some abbba reptetitions "
someText *= 40000
print len(someText)
n = 3
ngrams = []
for word in filter(lambda x: len(x) >= n, someText.split(" ")):
for i in range(len(word)-n+1):
ngrams.append(word[i:i+n])
# you could inline all logic here
# add to an ordered list for which the frequiency is the key for ordering and the paylod the actual word
ngrams_freq = list([[len(list(group)), key] for key, group in groupby(sorted(ngrams, key=str.lower))])
ngrams_freq_sorted = sorted(ngrams_freq, reverse=True)
popular_ngrams = []
for freq in ngrams_freq_sorted:
if freq[0] == ngrams_freq_sorted[0][0]:
popular_ngrams.append(freq[1])
else:
break
print "Most popular ngram: " + sorted(popular_ngrams, key=str.lower)[0]
# > 2560000
# > Most popular ngram: aaa
# > [Finished in 1.3s]**
Upvotes: 2
Reputation: 1987
So the basic recipe for this problem would be:
You can find my c++ solution here: http://ideone.com/MNFSis
Given:
const unsigned int MAX_STR_LEN = 250000;
const unsigned short NGRAM = 3;
const unsigned int NGRAMS = MAX_STR_LEN-NGRAM;
//we will need a maximum of "the length of our string" - "the length of our n-gram"
//places to store our n-grams, and each ngram is specified by NGRAM+1 for '\0'
char ngrams[NGRAMS][NGRAM+1] = { 0 };
Then, for the first step - this is the code:
const char *ptr = str;
int idx = 0;
//notTerminated checks ptr[0] to ptr[NGRAM-1] are not '\0'
while (notTerminated(ptr)) {
//noSpace checks ptr[0] to ptr[NGRAM-1] are isalpha()
if (noSpace(ptr)) {
//safely copy our current n-gram over to the ngrams array
//we're iterating over ptr and because we're here we know ptr and the next NGRAM spaces
//are valid letters
for (int i=0; i<NGRAM; i++) {
ngrams[idx][i] = ptr[i];
}
ngrams[idx][NGRAM] = '\0'; //important to zero-terminate
idx++;
}
ptr++;
}
At this point, we have a list of all n-grams. Lets find the most popular one:
FreqNode head = { "HEAD", 0, 0, 0 }; //the start of our list
for (int i=0; i<NGRAMS; i++) {
if (ngrams[i][0] == '\0') break;
//insertFreqNode takes a start node, this where we will start to search for duplicates
//the simplest description is like this:
// 1 we search from head down each child, if we find a node that has text equal to
// ngrams[i] then we update it's frequency count
// 2 if the freq is >= to the current winner we place this as head.next
// 3 after program is complete, our most popular nodes will be the first nodes
// I have not implemented sorting of these - it's an exercise for the reader ;)
insertFreqNode(&head, ngrams[i]);
}
//as the list is ordered, head.next will always be the most popular n-gram
cout << "Winner is: " << head.next->str << " " << " with " << head.next->freq << " occurrences" << endl
Good luck to you!
Upvotes: 1
Reputation: 3891
You can convert trigram into RADIX50 code. See http://en.wikipedia.org/wiki/DEC_Radix-50
In radix50, output value for trigram fits into 16-bit unsigned int value.
Thereafter, you can use radix-encoded trigram as index in the array.
So, your code would be like:
uint16_t counters[1 << 16]; // 64K counters
bzero(counters, sizeof(counters));
for(const char *p = txt; p[2] != 0; p++)
counters[radix50(p)]++;
Thereafter, just search for max value in the array, and decode index into trigram back.
I used this trick, when implemented Wilbur-Khovayko algorithm for fuzzy search ~10 years ago.
You can download source here: http://itman.narod.ru/source/jwilbur1.tar.gz.
Upvotes: 0
Reputation: 46445
If implementation efficiency is what matters and you are using C, I would initialize an array of pointers to the starts of n-grams in the string, use qsort
to sort the pointers according to the n-gram that they are part of, and then loop over that sorted array and figure out counts.
This should execute fast enough, and there is no need to code any fancy data structures.
Upvotes: 6