Reputation: 33
I have this if statement:
if value_n_in_f > 0 && value_m_in_f != 1
puts "I: f(x)=#{value_m_in_f}x+#{value_n_in_f}"
elsif value_n_in_f == 0 && value_m_in_f != 1
puts "I: f(x)=#{value_m_in_f}x"
elsif value_n_in_f < 0 && value_m_in_f != 1
puts "I: f(x)=#{value_m_in_f}x#{value_n_in_f}"
elsif value_n_in_f > 0 && value_m_in_f == 1
puts "I: f(x)=x+#{value_n_in_f}"
elsif value_n_in_f == 0 && value_m_in_f == 1
puts "I: f(x)=x"
elsif value_n_in_f < 0 && value_m_in_f == 1
puts "I: f(x)=x#{value_n_in_f}"
end`
I have to use this statement really often in other statements and it makes my code unnecessarily long. Obviously if_for_f=if ....... end won't work. Is there any other way? Here's an example what I want it to look like:
puts "Now we insert #{value_of_x} in #{if_for_f}"
Is there any way I can do something like this? Note that I am absolutly new to this.
Thanks in advance, Kaiton
Upvotes: 2
Views: 124
Reputation: 3191
A couple of things here: you can put "puts" before the whole if/elsif block and avoid having puts on every line, like so:
puts case
when (value_n_in_f > 0 && value_m_in_f != 1) then "I: f(x)=#{value_m_in_f}x+#{value_n_in_f}"
when (value_n_in_f == 0 && value_m_in_f != 1) then "I: f(x)=#{value_m_in_f}x"
end
Second, a case statement would be much more readable, like so:
def big_compare(value_n_in_f, value_m_in_f)
msg = case
when (value_n_in_f > 0 && value_m_in_f != 1) then "I: f(x)=#{value_m_in_f}x+#{value_n_in_f}"
when (value_n_in_f == 0 && value_m_in_f != 1) then "I: f(x)=#{value_m_in_f}x"
when (value_n_in_f < 0 && value_m_in_f != 1) then "I: f(x)=#{value_m_in_f}x#{value_n_in_f}"
when (value_n_in_f > 0 && value_m_in_f == 1) then "I: f(x)=x+#{value_n_in_f}"
when (value_n_in_f == 0 && value_m_in_f == 1) then "I: f(x)=x"
when (value_n_in_f < 0 && value_m_in_f == 1) then "I: f(x)=x#{value_n_in_f}"
end
end
puts big_compare(0, 0)
Upvotes: 2
Reputation: 48649
can't I just def a function with its function to run this case statement and call it then when I need it it?
Of course:
def do_stuff(m, n)
if m == 1
if n > 0 then "I: f(x)=x+#{n}"
elsif n == 0 then "I: f(x)=x"
elsif n < 0 then "I: f(x)=x#{n}"
end
else
if n > 0 then "I: f(x)=#{m}x+#{n}"
elsif n == 0 then "I: f(x)=#{m}x"
elsif n < 0 then "I: f(x)=#{m}x#{n}"
end
end
end
puts do_stuff(1, 1) #I: f(x)=x+1
Or, if compactness is the goal, we can get to this:
def do_stuff(m, n)
if m == 1
n == 0 ? "I: f(x)=x" : "I: f(x)=x#{sprintf("%+d", n)}"
else
n == 0 ? "I: f(x)=#{m}x" : "I: f(x)=#{m}x#{sprintf("%+d", n)}"
end
end
...and then a one liner:
def do_stuff(m, n)
(m == 1) ? (n == 0 ? "I: f(x)=x" : "I: f(x)=x#{sprintf("%+d", n)}") : (n == 0 ? "I: f(x)=#{m}x" : "I: f(x)=#{m}x#{sprintf("%+d", n)}")
end
end
But your methodology has some problems with zeros and -1:
def do_stuff(value_m_in_f, value_n_in_f)
if value_n_in_f > 0 && value_m_in_f != 1
puts "I: f(x)=#{value_m_in_f}x+#{value_n_in_f}"
elsif value_n_in_f == 0 && value_m_in_f != 1
puts "I: f(x)=#{value_m_in_f}x"
elsif value_n_in_f < 0 && value_m_in_f != 1
puts "I: f(x)=#{value_m_in_f}x#{value_n_in_f}"
elsif value_n_in_f > 0 && value_m_in_f == 1
puts "I: f(x)=x+#{value_n_in_f}"
elsif value_n_in_f == 0 && value_m_in_f == 1
puts "I: f(x)=x"
elsif value_n_in_f < 0 && value_m_in_f == 1
puts "I: f(x)=x#{value_n_in_f}"
end
end
do_stuff(1, 0)
do_stuff(1,-1)
do_stuff(1, 1)
do_stuff(0,-1)
do_stuff(0, 0)
do_stuff(-1, 1)
--output:--
I: f(x)=x
I: f(x)=x-1
I: f(x)=x+1
I: f(x)=0x-1 #<---HERE
I: f(x)=0x #<---HERE
I: f(x)=-1x+1 #<---HERE
So let's fix that:
def get_line_equ(m, b)
constant = (b == 0) ? "" : sprintf("%+d", b) # 2 => "+2"
case m
when 0
xterm = ""
constant = b
when 1
xterm = "x"
when -1
xterm = "-x"
else
xterm = "#{m}x"
end
"I: f(x)=#{xterm}#{constant}"
end
puts get_line_equ(0, 0)
puts get_line_equ(0, -1)
puts get_line_equ(0, 1)
puts get_line_equ(1, 0)
puts get_line_equ(1,-1)
puts get_line_equ(1, 1)
puts get_line_equ(-1, 0)
puts get_line_equ(-1, -1)
puts get_line_equ(-1, 1)
puts get_line_equ(2, 0)
puts get_line_equ(2, -1)
puts get_line_equ(2, 1)
--output:--
I: f(x)=0
I: f(x)=-1
I: f(x)=1
I: f(x)=x
I: f(x)=x-1
I: f(x)=x+1
I: f(x)=-x
I: f(x)=-x-1
I: f(x)=-x+1
I: f(x)=2x
I: f(x)=2x-1
I: f(x)=2x+1
Better?
spoiler:
The final def is not as efficient as it could be: the first line should be removed and copied to each of the when branches--except for the first.
In response to comment:
def my_sprintf(str, *numbers)
str.gsub(/% .*? [df]/x) do |match| #Looks for %...d or %...f sequences
puts match
end
end
my_sprintf("The answer is: %+d or %+d", -2, 3)
--output:--
%+d
%+d
Next:
def my_sprintf(str, *numbers)
str.gsub(/% .*? [df]/x) do |format_sequ|
number_as_str = numbers.shift.to_s
p number_as_str
if format_sequ[1] == "+" and number_as_str[0] != "-"
"+#{number_as_str}"
else
number_as_str
end
end
end
puts my_sprintf("The answer is: %+d or %+d.", -2, 3)
--output:--
"-2"
"3"
The answer is: -2 or +3.
Upvotes: 4
Reputation: 110755
Here's a more compact way to write your case statement. Recall that a <=> b => -1 if a < b
, a <=> b => 0 if a == b
and a <=> b => -1 if a > b
.
"I: f(x)=" +
case [value_n_in_f <=> 0, value_m_in_f == 1]
when [ 1,false] then "#{value_m_in_f}x+#{value_n_in_f}"
when [ 0,false] then "#{value_m_in_f}x"
when [-1,false] then "#{value_m_in_f}x#{value_n_in_f}"
when [ 1,true] then "x+#{value_n_in_f}"
when [ 0,true] then "x"
when [-1,true] then "x#{value_n_in_f}"
end
If you wish to demonstrate how the string is built, you could do something like this (with value_n_in_f
and value_m_in_f
renamed intercept
and slope
, respectively):
"I: f(x)=" +
case
when slope.zero?
intercept.zero? ? "0" : "#{intercept}"
else
case slope.to_f
when 1.0 then ""
when -1.0 then "-"
else "#{slope}"
end + "x" +
case intercept <=> 0
when 0 then ""
when -1 then "#{intercept}"
else "+#{intercept}"
end
end
Note that this permits slope < 0
, which is not part of the specification. I tested this for various combinations of intercept
and slope
:
intercept slope string
-2.1 4 I: f(x)=4x-2.1
-2.1 -2.2 I: f(x)=-2.2x-2.1
-2.1 0 I: f(x)=-2.1
-2.1 0.0 I: f(x)=-2.1
-2.1 -1 I: f(x)=-x-2.1
-2.1 1.0 I: f(x)=x-2.1
0 4 I: f(x)=4x
0 -2.2 I: f(x)=-2.2x
0 0 I: f(x)=0
0 0.0 I: f(x)=0
0 -1 I: f(x)=-x
0 1.0 I: f(x)=x
0.0 4 I: f(x)=4x
0.0 -2.2 I: f(x)=-2.2x
0.0 0 I: f(x)=0
0.0 0.0 I: f(x)=0
0.0 -1 I: f(x)=-x
0.0 1.0 I: f(x)=x
3 4 I: f(x)=4x+3
3 -2.2 I: f(x)=-2.2x+3
3 0 I: f(x)=3
3 0.0 I: f(x)=3
3 -1 I: f(x)=-x+3
3 1.0 I: f(x)=x+3
Upvotes: 4