Reputation: 487
I'm having trouble with JSON string output. I'm using tab separated CSV file and it looks like this:
date time loc_id country name sub1_id sub2_id type
2014-09-11 00:00:01 179 US acmnj 269 382 ico
2014-09-11 00:00:01 179 US acmnj 269 382 ico
2014-09-11 00:00:01 179 GB acmnj 269 382 ico
2014-09-11 00:00:01 179 US acmnj 269 382 ico
2014-09-11 00:00:02 179 GB acmnj 269 383 ico
2014-09-11 00:00:02 179 JP acmnj 269 383 ico
Code looks like this:
df = pd.read_csv('log.csv',sep='\t',encoding='utf-16')
count = df.groupby(['country','name','sub1_id','sub2_id','type']).size()
print(count.order(na_position='last',ascending=False).to_frame().to_json(orient='index'))
Output looks like this (first few lines):
{"["US","acmnj",269,383,"ico"]":{"0":76174},"["US","acmnj",269,382,"ico"]":{"0":73609},"["IT","acmnj",269,383,"ico"]":{"0":54211},"["IT","acmnj",269,382,"ico"]":{"0":52398},"["GB","acmnj",269,383,"ico"]":{"0":41346},"["GB","acmnj",269,382,"ico"]":{"0":40140},"["US","acmnj",269,405,"ico"]":{"0":39482},"["US","acmnj",269,400,"ico"]":{"0":39303},"["US","popcdd",178,365,"ico"]":{"0":33168},"["IT","acmnj",269,400,"ico"]":{"0":33026},"["IT","acmnj",269,405,"ico"]":{"0":32824},"["IT","achrfb141",141,42,"ico"]":{"0":26986},"["GB","acmnj",269,405,"ico"]":{"0":25895},"["IN","acmnj",269,383,"ico"]":{"0":25647},"["GB","acmnj",269,400,"ico"]":{"0":25488...
I want to load this output in PHP but i get NULL when I'm trying to decode this. I used JSON Validator to check string and it was invalid. I also tried without orient
parameter but I get invalid JSON format.
Upvotes: 2
Views: 2046
Reputation: 814
This does seem to be a problem with Pandas. I reproduced your error.
DataFrame.to_json can take several different orient arguments: 'split', 'records', 'index', 'columns' and 'values'.
In your case, it seems like 'split', 'records' and 'values' work, but 'index' and 'columns' doesn't.
You can quickly test this in python using the json module:
df = pd.read_csv('log.csv',sep='\t',encoding='utf-16')
count = df.groupby(['country','name','sub1_id','sub2_id','type']).size()
f=count.order(ascending=False).to_frame()
json.loads(f.to_json(orient='index')) # This failed for me
json.loads(f.to_json(orient='records')) #This worked
Upvotes: 4