Reputation: 105
I have a list of string[]
.
List<string[]> cardDataBase;
I need to sort that list by each list-item's second string value (item[1]
) in custom order.
The custom order is a bit complicated, order by those starting characters:
"MW1"
"FW"
"DN"
"MWSTX1CK"
"MWSTX2FF"
then order by these letters following above starting letters:
"A"
"Q"
"J"
"C"
"E"
"I"
"A"
and then by the numbers following above.
a sample, unordered list left, ordered right:
MW1E10 MW1Q04
MWSTX2FFI06 MW1Q05
FWQ02 MW1E10
MW1Q04 MW1I06
MW1Q05 FWQ02
FWI01 FWI01
MWSTX2FFA01 DNC03
DNC03 MWSTX1CKC02
MWSTX1CKC02 MWSTX2FFI03
MWSTX2FFI03 MWSTX2FFI06
MW1I06 MWSTX2FFA01
I tried Linq but I am not that good in it right now and cannot solve this on my own. Do I need a dictionary, regex or a dictionary with regex in it? What would be the best approach?
Upvotes: 3
Views: 453
Reputation: 48156
I think you're approaching this incorrectly. You're not sorting strings, you're sorting structured objects that are misrepresented as strings (somebody aptly named this antipattern "stringly typed"). Your requirements show that you know this structure, yet it's not represented in the datastructure List<string[]>
, and that's making your life hard. You should parse that structure into a real type (struct or class), and then sort that.
enum PrefixCode { MW1, FW, DN, MWSTX1CK, MWSTX2FF, }
enum TheseLetters { Q, J, C, E, I, A, }
struct CardRecord : IComparable<CardRecord> {
public readonly PrefixCode Code;
public readonly TheseLetters Letter;
public readonly uint Number;
public CardRecord(string input) {
Code = ParseEnum<PrefixCode>(ref input);
Letter = ParseEnum<TheseLetters>(ref input);
Number = uint.Parse(input);
}
static T ParseEnum<T>(ref string input) { //assumes non-overlapping prefixes
foreach(T val in Enum.GetValues(typeof(T))) {
if(input.StartsWith(val.ToString())) {
input = input.Substring(val.ToString().Length);
return val;
}
}
throw new InvalidOperationException("Failed to parse: "+input);
}
public int CompareTo(CardRecord other) {
var codeCmp = Code.CompareTo(other.Code);
if (codeCmp!=0) return codeCmp;
var letterCmp = Letter.CompareTo(other.Letter);
if (letterCmp!=0) return letterCmp;
return Number.CompareTo(other.Number);
}
public override string ToString() {
return Code.ToString() + Letter + Number.ToString("00");
}
}
A program using the above to process your example might then be:
static class Program {
static void Main() {
var inputStrings = new []{ "MW1E10", "MWSTX2FFI06", "FWQ02", "MW1Q04", "MW1Q05",
"FWI01", "MWSTX2FFA01", "DNC03", "MWSTX1CKC02", "MWSTX2FFI03", "MW1I06" };
var outputStrings = inputStrings
.Select(s => new CardRecord(s))
.OrderBy(c => c)
.Select(c => c.ToString());
Console.WriteLine(string.Join("\n", outputStrings));
}
}
This generates the same ordering as in your example. In real code, I'd recommend you name the types according to what they represent, and not, for example, TheseLetters
.
This solution - with a real parse step - is superior because it's almost certain that you'll want to do more with this data at some point, and this allows you to actually access the components of the data easily. Furthermore, it's comprehensible to a future maintainer since the reason behind the ordering is somewhat clear. By contrast, if you chose to do complex string-based processing it's often very hard to understand what's going on (especially if it's part of a larger program, and not a tiny example as here).
Making new types is cheap. If your method's return value doesn't quite "fit" in an existing type, just make a new one, even if that means 1000's of types.
Upvotes: 1
Reputation: 26318
A bit spoonfeeding, but I found this question pretty interesting and perhaps it will be useful for others, also added some comments to explain:
void Main()
{
var cardDatabase = new List<string>{
"MW1E10",
"MWSTX2FFI06",
"FWQ02",
"MW1Q04",
"MW1Q05",
"FWI01",
"MWSTX2FFA01",
"DNC03",
"MWSTX1CKC02",
"MWSTX2FFI03",
"MW1I06",
};
var orderTable = new List<string>[]{
new List<string>
{
"MW1",
"FW",
"DN",
"MWSTX1CK",
"MWSTX2FF"
},
new List<string>
{
"Q",
"J",
"C",
"E",
"I",
"A"
}
};
var test = cardDatabase.Select(input => {
var r = Regex.Match(input, "^(MW1|FW|DN|MWSTX1CK|MWSTX2FF)(A|Q|J|C|E|I|A)([0-9]+)$");
if(!r.Success) throw new Exception("Invalid data!");
// for each input string,
// we are going to split it into "substrings",
// eg: MWSTX1CKC02 will be
// [MWSTX1CK, C, 02]
// after that, we use IndexOf on each component
// to calculate "real" order,
// note that thirdComponent(aka number component)
// does not need IndexOf because it is already representing the real order,
// we still want to convert string to integer though, because we don't like
// "string ordering" for numbers.
return new
{
input = input,
firstComponent = orderTable[0].IndexOf(r.Groups[1].Value),
secondComponent = orderTable[1].IndexOf(r.Groups[2].Value),
thirdComponent = int.Parse(r.Groups[3].Value)
};
// and after it's done,
// we start using LINQ OrderBy and ThenBy functions
// to have our custom sorting.
})
.OrderBy(calculatedInput => calculatedInput.firstComponent)
.ThenBy(calculatedInput => calculatedInput.secondComponent)
.ThenBy(calculatedInput => calculatedInput.thirdComponent)
.Select(calculatedInput => calculatedInput.input)
.ToList();
Console.WriteLine(test);
}
Upvotes: 1
Reputation: 46
You can use the IEnumerable.OrderBy method provided by the System.Linq namespace.
Upvotes: 0
Reputation: 649
You can use the Array.Sort() method. Where your first parameter is the string[] you're sorting and the second parameter contains the complicated logic of determining the order.
Upvotes: 0