Reputation: 51
Here is the indices code:
`
g = TitanFactory.build().set("storage.backend", "cassandra")
.set("storage.hostname", "127.0.0.1").open();
TitanManagement mgmt = g.getManagementSystem();
PropertyKey db_local_name = mgmt.makePropertyKey("db_local_name")
.dataType(String.class).make();
mgmt.buildIndex("byDb_local_name", Vertex.class).addKey(db_local_name)
.buildCompositeIndex();
PropertyKey db_schema = mgmt.makePropertyKey("db_schema")
.dataType(String.class).make();
mgmt.buildIndex("byDb_schema", Vertex.class).addKey(db_schema)
.buildCompositeIndex();
PropertyKey db_column = mgmt.makePropertyKey("db_column")
.dataType(String.class).make();
mgmt.buildIndex("byDb_column", Vertex.class).addKey(db_column)
.buildCompositeIndex();
PropertyKey type = mgmt.makePropertyKey("type").dataType(String.class)
.make();
mgmt.buildIndex("byType", Vertex.class).addKey(type)
.buildCompositeIndex();
PropertyKey value = mgmt.makePropertyKey("value")
.dataType(Object.class).make();
mgmt.buildIndex("byValue", Vertex.class).addKey(value)
.buildCompositeIndex();
PropertyKey index = mgmt.makePropertyKey("index")
.dataType(Integer.class).make();
mgmt.buildIndex("byIndex", Vertex.class).addKey(index)
.buildCompositeIndex();
mgmt.commit();`
Here is the search for vertices and then add vertex with 3 edges on 3GHz 2GB RAM pc. It does 830 vertices in 3 hours and I have 100,000 data its too slow. The code is below:
for (Object[] rowObj : list) {
// TXN_ID
Iterator<Vertex> iter = g.query()
.has("db_local_name", "Report Name 1")
.has("db_schema", "MPS").has("db_column", "txn_id")
.has("value", rowObj[0]).vertices().iterator();
if (iter.hasNext()) {
vertex1 = iter.next();
logger.debug("vertex1=" + vertex1.getId() + ","
+ vertex1.getProperty("db_local_name") + ","
+ vertex1.getProperty("db_schema") + ","
+ vertex1.getProperty("db_column") + ","
+ vertex1.getProperty("type") + ","
+ vertex1.getProperty("index") + ","
+ vertex1.getProperty("value"));
}
// TXN_TYPE
iter = g.query().has("db_local_name", "Report Name 1")
.has("db_schema", "MPS").has("db_column", "txn_type")
.has("value", rowObj[1]).vertices().iterator();
if (iter.hasNext()) {
vertex2 = iter.next();
logger.debug("vertex2=" + vertex2.getId() + ","
+ vertex2.getProperty("db_local_name") + ","
+ vertex2.getProperty("db_schema") + ","
+ vertex2.getProperty("db_column") + ","
+ vertex2.getProperty("type") + ","
+ vertex2.getProperty("index") + ","
+ vertex2.getProperty("value"));
}
// WALLET_ID
iter = g.query().has("db_local_name", "Report Name 1")
.has("db_schema", "MPS").has("db_column", "wallet_id")
.has("value", rowObj[2]).vertices().iterator();
if (iter.hasNext()) {
vertex3 = iter.next();
logger.debug("vertex3=" + vertex3.getId() + ","
+ vertex3.getProperty("db_local_name") + ","
+ vertex3.getProperty("db_schema") + ","
+ vertex3.getProperty("db_column") + ","
+ vertex3.getProperty("type") + ","
+ vertex3.getProperty("index") + ","
+ vertex3.getProperty("value"));
}
vertex4 = g.addVertex(null);
vertex4.setProperty("db_local_name", "Report Name 1");
vertex4.setProperty("db_schema", "MPS");
vertex4.setProperty("db_column", "amount");
vertex4.setProperty("type", "indivisual_0");
vertex4.setProperty("value", rowObj[3].toString());
vertex4.setProperty("index", i);
vertex1.addEdge("data", vertex4);
logger.debug("vertex1 added");
vertex2.addEdge("data", vertex4);
logger.debug("vertex2 added");
vertex3.addEdge("data", vertex4);
logger.debug("vertex3 added");
i++;
g.commit();
}
Is there anyway to optimize this code?
Upvotes: 1
Views: 1247
Reputation: 46216
For completeness, this question was answered in the Aurelius Graphs mailing list:
https://groups.google.com/forum/#!topic/aureliusgraphs/XKT6aokRfFI
Basically:
mgmt.buildIndex("by_local_name_schema_value", Vertex.class).addKey(db_local_name).addKey(db_schema).addKey(value).buildComposite();
g.commit()
after each loop cycle, instead do something
like this: if (++1%10000 == 0) g.commit()
storage.batch-loading
if not already doing soBatchGraph
as described in the Powers of Ten - Part I blog post and in the wiki - Using BatchGraph
would prevent you from having to maintain the transaction described in number 2 above.Upvotes: 1