Reputation: 529
Trying to run an uncomplicated regression in R and receiving long list of coefficient values with NAs for standard error and t-value. I've never experienced this before.
Result:
summary(model)
Call:
lm(formula = fed$SPX.Index ~ fed$Fed.Treasuries...MM., data = fed)
Residuals:
ALL 311 residuals are 0: no residual degrees of freedom!
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1258.84 NA NA NA
fed$Fed.Treasuries...MM. 1,016,102 0.94 NA NA NA
fed$Fed.Treasuries...MM. 1,030,985 17.72 NA NA NA
fed$Fed.Treasuries...MM. 1,062,061 27.12 NA NA NA
fed$Fed.Treasuries...MM. 917,451 -52.77 NA NA NA
fed$Fed.Treasuries...MM. 949,612 -30.56 NA NA NA
fed$Fed.Treasuries...MM. 967,553 -23.61 NA NA NA
Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: NaN
F-statistic: NaN on 310 and 0 DF, p-value: NA
head(fed)
X Fed.Treasuries...MM. Reserve.Repurchases Agency.Debt.Held Treasuries.Maturing.in.5.10.years SPX.Index
1 10/1/2008 476,621 93,063 14,500 93,362 1161.06
2 10/8/2008 476,579 77,349 14,105 93,353 984.94
3 10/15/2008 476,555 107,819 14,105 94,336 907.84
4 10/22/2008 476,512 95,987 14,105 94,327 896.78
5 10/29/2008 476,469 94,655 13,620 94,317 930.09
6 11/5/2008 476,456 96,663 13,235 94,312 952.77
Upvotes: 0
Views: 4172
Reputation: 94182
You have commas in your numbers in your CSV file, R reads them as characters. Your model then has as many levels as rows, and so is degenerate.
Illustration. Take this CSV file:
1, "1,234", "2,345,565"
2, "2,345", "3,234,543"
3, "3,234", "3,987,766"
Read in, fit first column (numbers) against third column (comma-separated numbers):
> fed = read.csv("commas.csv",head=FALSE)
> summary(lm(V1~V3, fed))
Call:
lm(formula = V1 ~ V3, data = fed)
Residuals:
ALL 3 residuals are 0: no residual degrees of freedom!
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1 NA NA NA
V3 3,234,543 1 NA NA NA
V3 3,987,766 2 NA NA NA
Residual standard error: NaN on 0 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: NaN
F-statistic: NaN on 2 and 0 DF, p-value: NA
Note this is exactly what you are getting but with different column names. So this almost certainly must be what you have.
Fix. Convert column:
> fed$V3 = as.numeric(gsub(",","", fed$V3))
> summary(lm(V1~V3, fed))
Call:
lm(formula = V1 ~ V3, data = fed)
Residuals:
1 2 3
0.02522 -0.05499 0.02977
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.875e+00 1.890e-01 -9.922 0.0639 .
V3 1.215e-06 5.799e-08 20.952 0.0304 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.06742 on 1 degrees of freedom
Multiple R-squared: 0.9977, Adjusted R-squared: 0.9955
F-statistic: 439 on 1 and 1 DF, p-value: 0.03036
Repeat over columns as necessary.
Upvotes: 4