Reputation: 3288
Given an input n
, find the sum of all the possible combinations of numbers 1 ... n
.
For example, if n=3
, then all the possible combinations are
(1),(2),(3),(1,2),(1,3),(2,3),(1,2,3)
and their sum is
1 + 2 + 3 + (1+2) + (1+3) + (2+3) + (1+2+3) =24
I am able to solve this problem using recursion
. How can I solve this problem using Dynamic Programming
?
#include<iostream>
using namespace std;
int sum=0,n;
int f(int pos,int s)
{
if(pos>n)
{
return 0;
}
else
{
for(int i=pos+1;i<=n;++i)
{
sum+=s+i;
f(i,s+i);
}
}
}
int main()
{
cin>>n;
sum=0;
f(0,0);
cout<<sum<<'\n';
}
}
EDIT Though this problem can be solved in constant time using this series.
But I want to know how this can be done using Dynamic Programming
as I am very weak at it.
Upvotes: 1
Views: 445
Reputation: 1457
let dp[n] be the result, Therefore:
dp[1] = 1
dp[n] = 2 * dp[n-1] + 2^(n-1) * n
First, it is obvious that dp[1] = 1
Second, dp[n] is the sum which contains n and sum which didn't contains n
E.G: dp[3] = {(1) (2) (1,2)} + {(3), (1,3), (2,3), (1,2,3)}
We can find dp[n-1] appear twice and the number of n appear 2^(n-1) times
I think maybe it is what you want.
Upvotes: 2
Reputation: 861
You do not need to use dynamic programming; you can use simple arithmetic if you want.
The number of cases is 2 ^ n, since each number is either on or off for a given sum.
Each number from 1 to n is used in exactly half of the sums, so each number comes 2 ^ (n-1) times. 1 + 2 + ... + n = (n - 1) * n / 2.
So the sum is (n - 1) * n / 2 * 2 ^ (n-1). For n = 3, it is (4*3/2) * 4 = 24.
EDIT: if you really want to use dynamic programming, here's one way. Dynamic programming makes use of saving the results of sub-problems to make the super problem faster to solve. In this question, the sub-problem would be the sum of all combinations from 1 ... n-1.
So create a mapping from n -> (number of combinations, sum of combinations).
Initialize with 1 -> (2,1). Because there are two combinations {0,1} and the sum is 1. Including 0 just makes the math a bit easier.
Then your iteration step is to use the mapping.
Let's say (n-1) -> (k,s), meaning there are k sets that sum to s for 1 ... n-1.
Then the number of sets for n is k * 2 (each combination either has n or does not). And the sum of all combinations is s + (s + k * n), since you have the previous sum (where n is missing) plus the sum of all the combinations with n (which should be k * n more than s because there are k new combinations with n in each).
So add n -> (2*k,2*s + k*n).
And your final answer is the s in n -> (k,s).
Upvotes: 2