Reputation: 96300
On the following series:
0 1411161507178
1 1411138436009
2 1411123732180
3 1411167606146
4 1411124780140
5 1411159331327
6 1411131745474
7 1411151831454
8 1411152487758
9 1411137160544
Name: my_series, dtype: int64
This command (convert to timestamp, localize and convert to EST) works:
pd.to_datetime(my_series, unit='ms').apply(lambda x: x.tz_localize('UTC').tz_convert('US/Eastern'))
but this one fails:
pd.to_datetime(my_series, unit='ms').tz_localize('UTC').tz_convert('US/Eastern')
with:
TypeError Traceback (most recent call last)
<ipython-input-3-58187a4b60f8> in <module>()
----> 1 lua = pd.to_datetime(df[column], unit='ms').tz_localize('UTC').tz_convert('US/Eastern')
/Users/josh/anaconda/envs/py34/lib/python3.4/site-packages/pandas/core/generic.py in tz_localize(self, tz, axis, copy, infer_dst)
3492 ax_name = self._get_axis_name(axis)
3493 raise TypeError('%s is not a valid DatetimeIndex or PeriodIndex' %
-> 3494 ax_name)
3495 else:
3496 ax = DatetimeIndex([],tz=tz)
TypeError: index is not a valid DatetimeIndex or PeriodIndex
and so does this one:
my_series.tz_localize('UTC').tz_convert('US/Eastern')
with:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-4-0a7cb1e94e1e> in <module>()
----> 1 lua = df[column].tz_localize('UTC').tz_convert('US/Eastern')
/Users/josh/anaconda/envs/py34/lib/python3.4/site-packages/pandas/core/generic.py in tz_localize(self, tz, axis, copy, infer_dst)
3492 ax_name = self._get_axis_name(axis)
3493 raise TypeError('%s is not a valid DatetimeIndex or PeriodIndex' %
-> 3494 ax_name)
3495 else:
3496 ax = DatetimeIndex([],tz=tz)
TypeError: index is not a valid DatetimeIndex or PeriodIndex
As far as I understand, the second approach above (the first one that fails) should work. Why does it fail?
Upvotes: 59
Views: 42319
Reputation: 51
this work fine
pd.to_datetime(my_series,unit='ms', utc=True).dt.tz_convert('US/Eastern')
Upvotes: 4
Reputation: 249303
As Jeff's answer mentions, tz_localize()
and tz_convert()
act on the index, not the data. This was a huge surprise to me too.
Since Jeff's answer was written, Pandas 0.15 added a new Series.dt
accessor that helps your use case. You can now do this:
pd.to_datetime(my_series, unit='ms').dt.tz_localize('UTC').dt.tz_convert('US/Eastern')
Upvotes: 125
Reputation: 128988
tz_localize/tz_convert
act on the INDEX of the object, not on the values. Easiest to simply turn it into an index then localize and convert. If you then want a Series back you can use to_series()
In [47]: pd.DatetimeIndex(pd.to_datetime(s,unit='ms')).tz_localize('UTC').tz_convert('US/Eastern')
Out[47]:
<class 'pandas.tseries.index.DatetimeIndex'>
[2014-09-19 17:18:27.178000-04:00, ..., 2014-09-19 10:32:40.544000-04:00]
Length: 10, Freq: None, Timezone: US/Eastern
Upvotes: 35