Reputation: 1188
I have a x and y one-dimension numpy array and I would like to reproduce y with a known function to obtain "beta". Here is the code I am using:
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
y = array([ 0.04022493, 0.04287536, 0.03983657, 0.0393201 , 0.03810298,
0.0363814 , 0.0331144 , 0.03074823, 0.02795767, 0.02413816,
0.02180802, 0.01861309, 0.01632699, 0.01368056, 0.01124232,
0.01005323, 0.00867196, 0.00940864, 0.00961282, 0.00892419,
0.01048963, 0.01199101, 0.01533408, 0.01855704, 0.02163586,
0.02630014, 0.02971127, 0.03511223, 0.03941218, 0.04280329,
0.04689105, 0.04960554, 0.05232003, 0.05487037, 0.05843364,
0.05120701])
x= array([ 0., 0.08975979, 0.17951958, 0.26927937, 0.35903916,
0.44879895, 0.53855874, 0.62831853, 0.71807832, 0.80783811,
0.8975979 , 0.98735769, 1.07711748, 1.16687727, 1.25663706,
1.34639685, 1.43615664, 1.52591643, 1.61567622, 1.70543601,
1.7951958 , 1.88495559, 1.97471538, 2.06447517, 2.15423496,
2.24399475, 2.33375454, 2.42351433, 2.51327412, 2.60303391,
2.6927937 , 2.78255349, 2.87231328, 2.96207307, 3.05183286,
3.14159265])
def func(x,beta):
return 1.0/(4.0*np.pi)*(1+beta*(3.0/2*np.cos(x)**2-1.0/2))
guesses = [20]
popt,pcov = curve_fit(func,x,y,p0=guesses)
y_fit = 1/(4.0*np.pi)*(1+popt[0]*(3.0/2*np.cos(x)**2-1.0/2))
plt.figure(1)
plt.plot(x,y,'ro',x,y_fit,'k-')
plt.show()
The code works but the fitting is completely off (see picture). Any idea why?
It looks like the formula to use contains an additional parameter, i.e. p
def func(x,beta,p):
return p/(4.0*np.pi)*(1+beta*(3.0/2*np.cos(x)**2-1.0/2))
guesses = [20,5]
popt,pcov = curve_fit(func,x,y,p0=guesses)
y_fit = func(angle_plot,*popt)
plt.figure(2)
plt.plot(x,y,'ro',x,y_fit,'k-')
plt.show()
print popt # [ 1.23341604 0.27362069]
In the popt which one is beta and which one is p?
Upvotes: 2
Views: 2537
Reputation: 31040
This is perhaps not what you want but, if you are just trying to get a good fit to the data, you could use np.polyfit
:
fit = np.polyfit(x,y,4)
fit_fn = np.poly1d(fit)
plt.scatter(x,y,label='data',color='r')
plt.plot(x,fit_fn(x),color='b',label='fit')
plt.legend(loc='upper left')
Note that fit
gives the coefficient values of, in this case, a 4th order polynomial:
>>> fit
array([-0.00877534, 0.05561778, -0.09494909, 0.02634183, 0.03936857])
Upvotes: 3
Reputation: 54330
This is going to be as good as you can get (assuming you get the equation right as @mdurant suggested), an additional intercept term is required to further improve the fit:
def func(x,beta, icpt):
return 1.0/(4.0*np.pi)*(1+beta*(3.0/2*np.cos(x)**2-1.0/2))+icpt
guesses = [20, 0]
popt,pcov = curve_fit(func,x,y,p0=guesses)
y_fit = func(x, *popt)
plt.figure(1)
plt.plot(x,y,'ro', x,y_fit,'k-')
print popt #[ 0.33748816 -0.05780343]
Upvotes: 0