Reputation: 34537
I am trying out the Julia DataFrames module. I am interested in it so I can use it to plot simple simulations in Gadfly. I want to be able to iteratively add rows to the dataframe and I want to initialize it as empty.
The tutorials/documentation on how to do this is sparse (most documentation describes how to analyse imported data).
To append to a nonempty dataframe is straightforward:
df = DataFrame(A = [1, 2], B = [4, 5])
push!(df, [3 6])
This returns.
3x2 DataFrame
| Row | A | B |
|-----|---|---|
| 1 | 1 | 4 |
| 2 | 2 | 5 |
| 3 | 3 | 6 |
But for an empty init I get errors.
df = DataFrame(A = [], B = [])
push!(df, [3, 6])
Error message:
ArgumentError("Error adding 3 to column :A. Possible type mis-match.")
while loading In[220], in expression starting on line 2
What is the best way to initialize an empty Julia DataFrame such that you can iteratively add items to it later in a for loop?
Upvotes: 49
Views: 26148
Reputation: 541
I think at least in the latest version of Julia you can achieve this by creating a pair object without specifying type
df = DataFrame("A" => [], "B" => [])
push!(df, [5,'f'])
1×2 DataFrame
Row │ A B
│ Any Any
─────┼──────────
1 │ 5 f
as seen in this post by @Bogumił Kamiński where multiple columns are needed, something like this can be done:
entries = ["A", "B", "C", "D"]
df = DataFrame([ name =>[] for name in entries])
julia> push!(df,[4,5,'r','p'])
1×4 DataFrame
Row │ A B C D
│ Any Any Any Any
─────┼────────────────────
1 │ 4 5 r p
Or as pointed out by @Antonello below if you know that type you can do.
df = DataFrame([name => Int[] for name in entries])
which is also in @Bogumil Kaminski's original post.
Upvotes: 2
Reputation: 1209
The answer from @waTeim already answers the initial question. But what if I want to dynamically create an empty DataFrame
and append rows to it. E.g. what if I don't want hard-coded column names?
In this case, df = DataFrame(A = Int64[], B = Int64[])
is not sufficient.
The NamedTuple
A = Int64[], B = Int64[]
needs to be create dynamically.
Let's assume we have a vector of column names col_names
and a vector of column types colum_types
from which to create an emptyDataFrame
.
col_names = [:A, :B] # needs to be a vector Symbols
col_types = [Int64, Float64]
# Create a NamedTuple (A=Int64[], ....) by doing
named_tuple = (; zip(col_names, type[] for type in col_types )...)
df = DataFrame(named_tuple) # 0×2 DataFrame
Alternatively, the NameTuple
could be created with
# or by doing
named_tuple = NamedTuple{Tuple(col_names)}(type[] for type in col_types )
Upvotes: 5
Reputation: 31918
using Pkg, CSV, DataFrames
iris = CSV.read(joinpath(Pkg.dir("DataFrames"), "test/data/iris.csv"))
new_iris = similar(iris, nrow(iris))
head(new_iris, 2)
# 2×5 DataFrame
# │ Row │ SepalLength │ SepalWidth │ PetalLength │ PetalWidth │ Species │
# ├─────┼─────────────┼────────────┼─────────────┼────────────┼─────────┤
# │ 1 │ missing │ missing │ missing │ missing │ missing │
# │ 2 │ missing │ missing │ missing │ missing │ missing │
for (i, row) in enumerate(eachrow(iris))
new_iris[i, :] = row[:]
end
head(new_iris, 2)
# 2×5 DataFrame
# │ Row │ SepalLength │ SepalWidth │ PetalLength │ PetalWidth │ Species │
# ├─────┼─────────────┼────────────┼─────────────┼────────────┼─────────┤
# │ 1 │ 5.1 │ 3.5 │ 1.4 │ 0.2 │ setosa │
# │ 2 │ 4.9 │ 3.0 │ 1.4 │ 0.2 │ setosa │
Upvotes: 4
Reputation: 9235
A zero length array defined using only [] will lack sufficient type information.
julia> typeof([])
Array{None,1}
So to avoid that problem is to simply indicate the type.
julia> typeof(Int64[])
Array{Int64,1}
And you can apply that to your DataFrame problem
julia> df = DataFrame(A = Int64[], B = Int64[])
0x2 DataFrame
julia> push!(df, [3 6])
julia> df
1x2 DataFrame
| Row | A | B |
|-----|---|---|
| 1 | 3 | 6 |
Upvotes: 49